12 research outputs found

    К ΠΎΡ†Π΅Π½ΠΊΠ΅ стСпСни дроблСния струТСк

    Get PDF
    In order to analyze chip crushing rate it is proposed to use a sieve analysis and methods of mathematical statistics which are applied in powder metallurgy, peat and coal industries and other branches. Estimation in fluctuation of chip size, stability of its crushing under various cutting conditions, materials and changes of machining conditions have been investigated on the basis of chip fractional composition. Distribution curves and histograms show dominant size of chips. The sieve analysis of chip crushing rate has been applied in deep drilling of steel and grey cast iron.Для Π°Π½Π°Π»ΠΈΠ·Π° стСпСни дроблСния струТСк прСдлагаСтся ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ситовой Π°Π½Π°Π»ΠΈΠ· ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ матСматичСской статистики, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ Π² ΠΏΠΎΡ€ΠΎΡˆΠΊΠΎΠ²ΠΎΠΉ ΠΌΠ΅Ρ‚Π°Π»Π»ΡƒΡ€Π³ΠΈΠΈ, торфяной, ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΡ€ΠΎΠΌΡ‹ΡˆΠ»Π΅Π½Π½ΠΎΡΡ‚ΠΈ ΠΌ Π΄Ρ€ΡƒΠ³ΠΈΡ… отраслях. По Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΠΌΡƒ составу струТки Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Π° ΠΎΡ†Π΅Π½ΠΊΠ° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠ² струТСк, ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒ Π΅Π΅ дроблСния ΠΏΡ€ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Ρ€Π΅ΠΆΠΈΠΌΠ°Ρ… рСзания, ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°Ρ… ΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΈ условий ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ. ΠšΡ€ΠΈΠ²Ρ‹Π΅ распрСдСлСния ΠΈ гистограммы ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ Π΄ΠΎΠΌΠΈΠ½ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΉ Ρ€Π°Π·ΠΌΠ΅Ρ€ струТСк. Π‘ΠΈΡ‚ΠΎΠ²ΠΎΠΉ Π°Π½Π°Π»ΠΈΠ· стСпСни дроблСния струТСк Π±Ρ‹Π» ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ ΠΏΡ€ΠΈ Π³Π»ΡƒΠ±ΠΎΠΊΠΎΠΌ свСрлСнии сталСй ΠΈ сСрого Ρ‡ΡƒΠ³ΡƒΠ½Π°

    ΠžΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΡ процСсса очистки сточных Π²ΠΎΠ΄ постов ΠΌΠΎΠΉΠΊΠΈ Π°Π²Ρ‚ΠΎΡ‚Ρ€Π°ΠΊΡ‚ΠΎΡ€Π½ΠΎΠΉ Ρ‚Π΅Ρ…Π½ΠΈΠΊΠΈ ΠΏΠΎ энСргСтичСским Π·Π°Ρ‚Ρ€Π°Ρ‚Π°ΠΌ

    Get PDF
    The paper considers a process pertaining to purification of oily effluents while using electrocoagulation, electro-flotation and an electromagnetic hydro-cyclone, implemented with the help of a laboratory unit (Patent of the Republic of Belarus for the invention No 21229). The investigations have been carried out with the purpose to optimize specific energy consumption for the process of cleaning fuel and lubricants effluents. The following investigation methods have been applied – a literature review, a comparative analysis, an experiment execution, a mathematical modeling. Content of oil products in wastewater before and after treatment has been evaluated in the analytical laboratory of the Belarusian State Agrarian Technical University in accordance with standard methods. Purification of the oily effluents has been made with the help of a laboratory unit while using electroflotocoagulation method with removal of floated sludge in an electromagnetic hydrocyclone. This cleaning method makes it possible to increase a degree of water disinfection, provides a closed water supply, rational use of water resources, reduction of harmful effects of pollutants on the environment. An experimental design technique has been worked out and a three-level Box – Behnken design has been implemented in the paper. The problem concerning optimization of the purification process on energy costs has been solved without worsening the required concentration indices of petroleum products in water after treatment . Mathematical models have been obtained and optimal purification modes have been determined at the lowest specific energy costs and with sufficiently high degree of purification. Significance of regression coefficients has been estimated by Student criterion. It has been established that while using the proposed unit it is possible to obtain a degree of wastewater purification at automotive equipment washing stations with its performanceΒ GΒ = 0.7 l/s, current densityΒ jΒ = 150 A/m2. The degree of purification, determined by ratio of pollutant concentrations before and after purification, is up to 99.9 %. The results can be used in implementation of microprocessor control of cleaning mode while taking an initial concentration of pollution, unit capability, current density of an electroflotocoagulator as control action factors.РассмотрСн процСсс очистки нСфтСсодСрТащих стоков с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ элСктрокоагуляции, элСктрофлотации ΠΈ элСктромагнитного Π³ΠΈΠ΄Ρ€ΠΎΡ†ΠΈΠΊΠ»ΠΎΠ½Π°, Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ Π½Π° Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½ΠΎΠΉ установкС (ΠΏΠ°Ρ‚Π΅Π½Ρ‚ РСспублики Π‘Π΅Π»Π°Ρ€ΡƒΡΡŒ Π½Π° ΠΈΠ·ΠΎΠ±Ρ€Π΅Ρ‚Π΅Π½ΠΈΠ΅ β„– 21229). ИсслСдования ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈΡΡŒ с Ρ†Π΅Π»ΡŒΡŽ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ ΡƒΠ΄Π΅Π»ΡŒΠ½Ρ‹Ρ… энСргозатрат процСсса очистки стоков ΠΎΡ‚ Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π½ΠΎ-смазочных вСщСств. ΠœΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ исслСдования являлись ΠΎΠ±Π·ΠΎΡ€ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹, ΡΡ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ·, экспСримСнт, матСматичСскоС ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅. Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅ Π½Π΅Ρ„Ρ‚Π΅ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ² Π² сточных Π²ΠΎΠ΄Π°Ρ… Π΄ΠΎ ΠΈ послС очистки ΠΎΡ†Π΅Π½ΠΈΠ²Π°Π»ΠΎΡΡŒ Π² аналитичСской Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€ΠΈΠΈ БСлорусского государствСнного Π°Π³Ρ€Π°Ρ€Π½ΠΎΠ³ΠΎ тСхничСского унивСрситСта ΠΏΠΎ стандартным ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ°ΠΌ. Π’Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Π° очистка нСфтСсодСрТащих стоков Π½Π° Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½ΠΎΠΉ установкС с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° элСктрофлотокоагуляции с ΡƒΠ΄Π°Π»Π΅Π½ΠΈΠ΅ΠΌ Π²ΡΠΏΠ»Ρ‹Π²ΡˆΠ΅Π³ΠΎ шлама Π² элСктромагнитном Π³ΠΈΠ΄Ρ€ΠΎΡ†ΠΈΠΊΠ»ΠΎΠ½Π΅. Π”Π°Π½Π½Ρ‹ΠΉ способ очистки позволяСт ΠΏΠΎΠ²Ρ‹ΡΠΈΡ‚ΡŒ ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ обСззараТивания Π²ΠΎΠ΄Ρ‹, обСспСчиваСт Π·Π°ΠΌΠΊΠ½ΡƒΡ‚ΠΎΠ΅ водоснабТСниС, Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ использованиС Π²ΠΎΠ΄Π½Ρ‹Ρ… рСсурсов, сниТСниС Π²Ρ€Π΅Π΄Π½ΠΎΠ³ΠΎ воздСйствия Π·Π°Π³Ρ€ΡΠ·Π½ΡΡŽΡ‰ΠΈΡ… вСщСств Π½Π° ΠΎΠΊΡ€ΡƒΠΆΠ°ΡŽΡ‰ΡƒΡŽ срСду. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ ΠΏΠ»Π°Π½ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ экспСримСнта. Π Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½ Ρ‚Ρ€Π΅Ρ…ΡƒΡ€ΠΎΠ²Π½Π΅Π²Ρ‹ΠΉ ΠΏΠ»Π°Π½ Бокса – Π‘Π΅Π½ΠΊΠ΅Π½Π°. РСшСна Π·Π°Π΄Π°Ρ‡Π° ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ процСсса очистки ΠΏΠΎ энСргСтичСским Π·Π°Ρ‚Ρ€Π°Ρ‚Π°ΠΌ, Π½Π΅ ΡƒΡ…ΡƒΠ΄ΡˆΠ°Ρ Ρ‚Ρ€Π΅Π±ΡƒΠ΅ΠΌΡ‹Ρ… ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ Π½Π΅Ρ„Ρ‚Π΅ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ² Π² Π²ΠΎΠ΄Π΅ послС очистки. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ матСматичСскиС ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ Ρ€Π΅ΠΆΠΈΠΌΡ‹ очистки ΠΏΡ€ΠΈ Π½Π°ΠΈΠΌΠ΅Π½ΡŒΡˆΠΈΡ… ΡƒΠ΄Π΅Π»ΡŒΠ½Ρ‹Ρ… энСргСтичСских Π·Π°Ρ‚Ρ€Π°Ρ‚Π°Ρ… ΠΈ достаточно высокой стСпСни очистки. Π—Π½Π°Ρ‡ΠΈΠΌΠΎΡΡ‚ΡŒ коэффициСнтов рСгрСссии ΠΎΡ†Π΅Π½ΠΈΠ²Π°Π»Π°ΡΡŒ ΠΏΠΎ ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΡŽ Π‘Ρ‚ΡŒΡŽΠ΄Π΅Π½Ρ‚Π°. УстановлСно, Ρ‡Ρ‚ΠΎ Π½Π° ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠΉ установкС ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ очистки стоков постов ΠΌΠΎΠΉΠΊΠΈ Π°Π²Ρ‚ΠΎΡ‚Ρ€Π°ΠΊΡ‚ΠΎΡ€Π½ΠΎΠΉ Ρ‚Π΅Ρ…Π½ΠΈΠΊΠΈ ΠΌΠΎΠΆΠ½ΠΎ Π΄ΠΎΡΡ‚ΠΈΡ‡ΡŒ ΠΏΡ€ΠΈ Π΅Π΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈΒ GΒ = 0,7 Π»/с, плотности Ρ‚ΠΎΠΊΠ°Β jΒ = 150 А/ΠΌ2. Π‘Ρ‚Π΅ΠΏΠ΅Π½ΡŒ очистки, опрСдСляСмая ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ΠΌ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΉ загрязнитСля Π΄ΠΎ ΠΈ послС очистки, составляСт 99,9 %. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ ΠΏΡ€ΠΈ Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ микропроцСссорного управлСния Ρ€Π΅ΠΆΠΈΠΌΠΎΠΌ очистки, приняв Π² качСствС ΡƒΠΏΡ€Π°Π²Π»ΡΡŽΡ‰Π΅Π³ΠΎ воздСйствия Ρ‚Π°ΠΊΠΈΠ΅ Ρ„Π°ΠΊΡ‚ΠΎΡ€Ρ‹, ΠΊΠ°ΠΊ исходная концСнтрация загрязнСний, ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ установки, ΠΏΠ»ΠΎΡ‚Π½ΠΎΡΡ‚ΡŒ Ρ‚ΠΎΠΊΠ° элСктрофлотокоагулятора

    ΠžΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΡ тСхнологичСских Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎ-элСктричСского упрочнСния

    Get PDF
    In order to determine the optimal values of technological factors for electromagnetic hardening process (EMHP), an experimental study of the process of applying ferromagnetic Fe – 2 % V powder coating on 30Π₯Π“Π‘ (GOST 4543- 71) steel parts was conducted. The process productivity and coating continuity were selected as the target parameters for the EMHP optimization. By applying the experimental design method, based on 5-factor central composite rotatable uniform plan, we have created stochastic models, expressed in regression functions of the second order. It has been determined that the magnetic induction value in the working gap is the most significant technological factor, affecting both target parameters. With the increasing induction magnitude the process productivity and the coating continuity increase non-linearly until theΒ maximum limit value, which was attributed to the forming of current-conductive chains in the working gap, that have varying electrical conductivity and different directions relative to the lines of magnetic field forces. In order to determine the optimal EMHP mode we have solved the problems of finding maximums for greatest productivity and coating continuity within the constraints of the studied factor range. The discovered EMHP-modes, optimal for each separate parameter, coincide only in the value of the magnetic induction and the discharge density. The optimal values for the other control factors belong to different areas of factor range for different optimization parameters. To determine the EMHP modes, balanced against the both parameters, the problem of multicriteria optimization was solved. The obtained solution reveals that the density of discharge currents produces the biggest impact on the process productivity and the coating continuity within the balanced modes. At the same time the high continuity of the coating is achieved by the supplementing increase of peripheral speed of the processed workpiece, which leads to evener distribution of the intensively supplied mass of the ferromagnetic powder on the treated surface. The recommended technological modes of EMHP have been determined, based on the generalized optimality criteria.. Π‘ Ρ†Π΅Π»ΡŒΡŽ опрСдСлСния ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ тСхнологичСских Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎ-элСктричСского упрочнСния (МЭУ) Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΎ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ΅ исслСдованиС процСсса нанСсСния покрытия ΠΈΠ· Ρ„Π΅Ρ€Ρ€ΠΎΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ ΠΏΠΎΡ€ΠΎΡˆΠΊΠ° Fe – 2 % V Π½Π° Π΄Π΅Ρ‚Π°Π»ΠΈ ΠΈΠ· стали 30Π₯Π“Π‘ (Π“ΠžΠ‘Π’ 4543-71). Π’ качСствС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ МЭУ приняты ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ процСсса ΠΈ ΡΠΏΠ»ΠΎΡˆΠ½ΠΎΡΡ‚ΡŒ покрытия. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ планирования экспСримСнтов Π½Π° основС 5-Ρ„Π°ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Ρ€ΠΎΡ‚Π°Ρ‚Π°Π±Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΡƒΠ½ΠΈΡ„ΠΎΡ€ΠΌ-ΠΏΠ»Π°Π½Π° ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ стохастичСскиС ΠΌΠΎΠ΄Π΅Π»ΠΈ Π² Π²ΠΈΠ΄Π΅ рСгрСссионных ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ порядка. УстановлСно, Ρ‡Ρ‚ΠΎ тСхнологичСским Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠΌ, Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π²Π»ΠΈΡΡŽΡ‰ΠΈΠΌ Π½Π° ΠΎΠ±Π° ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°, являСтся Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠΉ ΠΈΠ½Π΄ΡƒΠΊΡ†ΠΈΠΈ Π² Ρ€Π°Π±ΠΎΡ‡Π΅ΠΌ Π·Π°Π·ΠΎΡ€Π΅. Π‘ Π΅Π΅ возрастаниСм ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ процСсса ΠΈ ΡΠΏΠ»ΠΎΡˆΠ½ΠΎΡΡ‚ΡŒ покрытия ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°ΡŽΡ‚ΡΡ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎ Π΄ΠΎ ΠΏΡ€Π΅Π΄Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ максимального значСния, Ρ‡Ρ‚ΠΎ объяснСно ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠΌ формирования Π² Ρ€Π°Π±ΠΎΡ‡Π΅ΠΌ Π·Π°Π·ΠΎΡ€Π΅ токопроводящих Ρ†Π΅ΠΏΠΎΡ‡Π΅ΠΊ с Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΉ элСктричСской ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒΡŽ ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹Ρ… силовых Π»ΠΈΠ½ΠΈΠΉ. Для опрСдСлСния ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ€Π΅ΠΆΠΈΠΌΠ° МЭУ Ρ€Π΅ΡˆΠ΅Π½Ρ‹ Π·Π°Π΄Π°Ρ‡ΠΈ поиска максимумов наибольшСй ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΈ ΡΠΏΠ»ΠΎΡˆΠ½ΠΎΡΡ‚ΠΈ покрытия Π² Π³Ρ€Π°Π½ΠΈΡ†Π°Ρ… исслСдованного Ρ„Π°ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ пространства. НайдСнныС ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΏΠΎ ΠΊΠ°ΠΆΠ΄ΠΎΠΌΡƒ ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½ΠΎΠΌΡƒ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρƒ Ρ€Π΅ΠΆΠΈΠΌΡ‹ МЭУ ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‚ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΏΠΎ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π΅ ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠΉ ΠΈΠ½Π΄ΡƒΠΊΡ†ΠΈΠΈ ΠΈ плотности разрядного Ρ‚ΠΎΠΊΠ°. ΠžΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ значСния ΠΎΡΡ‚Π°Π»ΡŒΠ½Ρ‹Ρ… ΡƒΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΡ… Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π»Π΅ΠΆΠ°Ρ‚ Π² Ρ€Π°Π·Π½Ρ‹Ρ… областях Ρ„Π°ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ пространства для Ρ€Π°Π·Π½Ρ‹Ρ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ. Для поиска компромиссных ΠΏΠΎ ΠΎΠ±ΠΎΠΈΠΌ критСриям Ρ€Π΅ΠΆΠΈΠΌΠΎΠ² МЭУ Ρ€Π΅ΡˆΠ΅Π½Π° Π·Π°Π΄Π°Ρ‡Π° ΠΌΠ½ΠΎΠ³ΠΎΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ ΡƒΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ наибольшСС влияниС Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ процСсса ΠΈ ΡΠΏΠ»ΠΎΡˆΠ½ΠΎΡΡ‚ΡŒ покрытия Π² области компромиссных Ρ€Π΅ΠΆΠΈΠΌΠΎΠ² ΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ ΠΏΠ»ΠΎΡ‚Π½ΠΎΡΡ‚ΡŒ разрядного Ρ‚ΠΎΠΊΠ°. ΠŸΡ€ΠΈ этом высокая ΡΠΏΠ»ΠΎΡˆΠ½ΠΎΡΡ‚ΡŒ покрытия достигаСтся ΠΏΡ€ΠΈ ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΌ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠΈ плотности разрядного Ρ‚ΠΎΠΊΠ° ΠΈ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΠΉ скорости ΠΎΠ±Ρ€Π°Π±Π°Ρ‚Ρ‹Π²Π°Π΅ΠΌΠΎΠΉ Π΄Π΅Ρ‚Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ способствуСт Π±ΠΎΠ»Π΅Π΅ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠΌΡƒ Ρ€Π°ΡΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ интСнсивно наносимой массы Ρ„Π΅Ρ€Ρ€ΠΎΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ ΠΏΠΎΡ€ΠΎΡˆΠΊΠ° Π½Π° ΠΎΠ±Ρ€Π°Π±Π°Ρ‚Ρ‹Π²Π°Π΅ΠΌΡƒΡŽ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ ΠΏΡ€Π΅Π΄ΠΏΠΎΡ‡Ρ‚ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ тСхнологичСскиС Ρ€Π΅ΠΆΠΈΠΌΡ‹ процСсса МЭУ ΠΏΠΎ ΠΎΠ±ΠΎΠ±Ρ‰Π΅Π½Π½ΠΎΠΌΡƒ ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΡŽ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ

    ВлияниС свойств Ρ€Π°Π±ΠΎΡ‡Π΅ΠΉ тСхнологичСской срСды Π½Π° ΡˆΠ΅Ρ€ΠΎΡ…ΠΎΠ²Π°Ρ‚ΠΎΡΡ‚ΡŒ повСрхности ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΈ ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎ-Π°Π±Ρ€Π°Π·ΠΈΠ²Π½ΠΎΠΉ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅

    Get PDF
    The results of experimental studies of the surface roughness parameters of ball bearing treadmills made of steel SHX-15 and the performance of the magnetic abrasive treatment process depending on the properties of the components of the working process medium are presented. The research used methods of mathematical modeling of the technological process of magnetic abrasive processing, subsequent analysis of the obtained multivariate regression equations to identify the most significant technological factors according to the criteria of their interaction and relative influence on surface roughness and processing performance. The relative total contribution to the change in the roughness of the treated surface (Ra, microns) and processing performance (Ξ”G, mg/min) was established: single control technological factors affect 29,1 % and 48,2 %, respectively; interacting control technological factors 46.8 % and 45.9 %, respectively. The controlling technological factors in descending order of the degree of influence by generalized significance are arranged in the sequence: hydrogen pH, gradient of magnetic induction B (T/mm), microhardness of abrasive HV (GPa), coolant viscosity Ξ³ (cSt), processing time t (s) and magnetic permeability Β΅ (mH/m). The interpretation of the physical mechanisms of interaction of controlling technological factors is given. The obtained results of a quantitative assessment of the relative total contribution of single control technological factors can be used in assigning modes of magnetic abrasive treatment of bearing rings, and their interaction – in studies of the synergism of the parameters of the working technological environment, which allows obtaining a much greater effect than using each parameter separately.ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… исслСдований ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΡˆΠ΅Ρ€ΠΎΡ…ΠΎΠ²Π°Ρ‚ΠΎΡΡ‚ΠΈ повСрхностСй Π±Π΅Π³ΠΎΠ²Ρ‹Ρ… Π΄ΠΎΡ€ΠΎΠΆΠ΅ΠΊ ΡˆΠ°Ρ€ΠΈΠΊΠΎΠ²Ρ‹Ρ… подшипников ΠΈΠ· стали Π¨Π₯-15 ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ процСсса ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎ-Π°Π±Ρ€Π°Π·ΠΈΠ²Π½ΠΎΠΉ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π² зависимости ΠΎΡ‚ свойств ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² Ρ€Π°Π±ΠΎΡ‡Π΅ΠΉ тСхнологичСской срСды. ΠŸΡ€ΠΈ исслСдованиях использовали ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ матСматичСского модСлирования тСхнологичСского процСсса ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎ-Π°Π±Ρ€Π°Π·ΠΈΠ²Π½ΠΎΠΉ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ, ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΌΠ½ΠΎΠ³ΠΎΡ„Π°ΠΊΡ‚ΠΎΡ€Π½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ рСгрСссии для выявлСния Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π·Π½Π°Ρ‡ΠΈΠΌΡ‹Ρ… тСхнологичСских Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΏΠΎ критСриям ΠΈΡ… взаимодСйствия ΠΈ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ влияния Π½Π° ΡˆΠ΅Ρ€ΠΎΡ…ΠΎΠ²Π°Ρ‚ΠΎΡΡ‚ΡŒ повСрхности ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ. УстановлСн ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ суммарный Π²ΠΊΠ»Π°Π΄ Π² ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡˆΠ΅Ρ€ΠΎΡ…ΠΎΠ²Π°Ρ‚ΠΎΡΡ‚ΠΈ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠΉ повСрхности (Ra, ΠΌΠΊΠΌ) ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ (Ξ”G, ΠΌΠ³/ΠΌΠΈΠ½): ΠΎΠ΄ΠΈΠ½ΠΎΡ‡Π½Ρ‹Ρ… ΡƒΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΡ… тСхнологичСских Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² 29,1 % ΠΈ 48,2 % соотвСтствСнно; Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… ΡƒΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΡ… тСхнологичСских Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² 46,8 % ΠΈ 45,9 % соотвСтствСнно. Π£ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠ΅ тСхнологичСскиС Ρ„Π°ΠΊΡ‚ΠΎΡ€Ρ‹ Π² порядкС убывания стСпСни влияния ΠΏΠΎ ΠΎΠ±ΠΎΠ±Ρ‰Π΅Π½Π½ΠΎΠΉ значимости Ρ€Π°ΡΠΏΠΎΠ»Π°Π³Π°ΡŽΡ‚ΡΡ Π² ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ: Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π½Ρ‹ΠΉ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒ pH, Π³Ρ€Π°Π΄ΠΈΠ΅Π½Ρ‚ ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠΉ ΠΈΠ½Π΄ΡƒΠΊΡ†ΠΈΠΈ B (Π’Π»/ΠΌΠΌ), ΠΌΠΈΠΊΡ€ΠΎΡ‚Π²Π΅Ρ€Π΄ΠΎΡΡ‚ΡŒ Π°Π±Ρ€Π°Π·ΠΈΠ²Π° HV (Π“ΠŸΠ°), Π²ΡΠ·ΠΊΠΎΡΡ‚ΡŒ Π‘ΠžΠ– Ξ³ (сБт), врСмя ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ t (с) ΠΈ магнитная ΠΏΡ€ΠΎΠ½ΠΈΡ†Π°Π΅ΠΌΠΎΡΡ‚ΡŒ Β΅ (ΠΌΠΊΠ“Π½/ΠΌ). ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½ΠΎ Ρ‚ΠΎΠ»ΠΊΠΎΠ²Π°Π½ΠΈΠ΅ физичСских ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² взаимодСйствия ΡƒΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΡ… тСхнологичСских Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ². ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ количСствСнной ΠΎΡ†Π΅Π½ΠΊΠΈ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ суммарного Π²ΠΊΠ»Π°Π΄Π° ΠΎΠ΄ΠΈΠ½ΠΎΡ‡Π½Ρ‹Ρ… ΡƒΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΡ… тСхнологичСских Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ ΠΏΡ€ΠΈ Π½Π°Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΈ Ρ€Π΅ΠΆΠΈΠΌΠΎΠ² ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎ-Π°Π±Ρ€Π°Π·ΠΈΠ²Π½ΠΎΠΉ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΊΠΎΠ»Π΅Ρ† подшипников, Π° ΠΈΡ… (Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ²) взаимодСйствия – Π² исслСдованиях синСргизма ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² Ρ€Π°Π±ΠΎΡ‡Π΅ΠΉ тСхнологичСской срСды, Ρ‡Ρ‚ΠΎ позволяСт ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ больший эффСкт, Ρ‡Π΅ΠΌ использованиС ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° Π² ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ

    ΠœΠžΠ”Π•Π›Π˜Π ΠžΠ’ΠΠΠ˜Π• ΠŸΠ ΠžΠ¦Π•Π‘Π‘Π ΠœΠΠ“ΠΠ˜Π’ΠΠž-ΠΠ‘Π ΠΠ—Π˜Π’ΠΠžΠ™ ΠžΠ‘Π ΠΠ‘ΠžΠ’ΠšΠ˜ И ΠžΠŸΠ’Π˜ΠœΠ˜Π—ΠΠ¦Π˜Π― Π•Π• Π’Π•Π₯ΠΠžΠ›ΠžΠ“Π˜Π§Π•Π‘ΠšΠ˜Π₯ Π Π•Π–Π˜ΠœΠžΠ’

    Get PDF
    An optimization of magnetic-abrasive finishing process for radial cylindrical surfaces has been performed. The optimization relies on stochastic models derived from statistical analysis of experimental data obtained by applying experimental design techniques. Dependencies of surface roughness and specific material removal rate from technological modes described by regression models in the form of 3rd-degree polynomial functions have been studied. Complex relationships and interdependencies between technological modes of magnetic-abrasive finishing process for radial cylindrical surfaces of ball-bearing races have been discovered and explained. As the result of the multi-criteria optimization, such parameters of technological modes have been identified, that ensure greater specific material removal rate within the targeted surface roughness tolerances. РСшСна Π·Π°Π΄Π°Ρ‡Π° ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ процСсса ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎ-Π°Π±Ρ€Π°Π·ΠΈΠ²Π½ΠΎΠΉ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ радиусных цилиндричСских повСрхностСй Π½Π° основС стохастичСских ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ, построСнных ΠΏΠΎ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌ статистичСского Π°Π½Π°Π»ΠΈΠ·Π° ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ…, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ матСматичСского планирования экспСримСнтов. Π˜Π·ΡƒΡ‡Π΅Π½Ρ‹ зависимости ΡˆΠ΅Ρ€ΠΎΡ…ΠΎΠ²Π°Ρ‚ΠΎΡΡ‚ΠΈ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠΉ повСрхности ΠΈ ΡƒΠ΄Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ массового съСма ΠΎΡ‚ тСхнологичСских Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ², описанныС рСгрСссионными модСлями Π² Π²ΠΈΠ΄Π΅ ΠΏΠΎΠ»ΠΈΠ½ΠΎΠΌΠΎΠ² Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅Π³ΠΎ порядка. ВыявлСно ΠΈ объяснСно слоТноС взаимодСйствиС ΠΈ взаимовлияниС тСхнологичСских Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎ-Π°Π±Ρ€Π°Π·ΠΈΠ²Π½ΠΎΠΉ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ радиусных цилиндричСских повСрхностСй ΠΊΠΎΠ»Π΅Ρ† ΡˆΠ°Ρ€ΠΈΠΊΠΎΠΏΠΎΠ΄ΡˆΠΈΠΏΠ½ΠΈΠΊΠΎΠ². По Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌ ΠΌΠ½ΠΎΠ³ΠΎΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ значСния тСхнологичСских Ρ€Π΅ΠΆΠΈΠΌΠΎΠ², ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΡ… ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ ΡƒΠ΄Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ массового съСма ΠΏΡ€ΠΈ ограничСниях Π½Π° Π΄ΠΎΠΏΡƒΡΡ‚ΠΈΠΌΡƒΡŽ ΡˆΠ΅Ρ€ΠΎΡ…ΠΎΠ²Π°Ρ‚ΠΎΡΡ‚ΡŒ повСрхности.

    Π”Π•Π€ΠžΠ ΠœΠΠ¦Π˜ΠžΠΠΠžΠ• Π˜Π—ΠœΠ•Π›Π¬Π§Π•ΠΠ˜Π• ЗЕРЕН МИКРОБВРУКВУРЫ Π›Π•Π“Π˜Π ΠžΠ’ΠΠΠΠ«Π₯ БВАЛЕЙ ПРИ ΠΠ•Π‘Π’ΠΠ¦Π˜ΠžΠΠΠ ΠΠžΠ™ Π˜ΠΠ’Π•ΠΠ‘Π˜Π’ΠΠžΠ™ ΠŸΠ›ΠΠ‘Π’Π˜Π§Π•Π‘ΠšΠžΠ™ Π”Π•Π€ΠžΠ ΠœΠΠ¦Π˜Π˜ Π’Π—Π Π«Π’ΠžΠœ

    Get PDF
    Dependence of grain size of alloyed high-strength steels of austenitic, bainitic, maraging classes on temperature and degree of deformation at non-stationary intensive plastic deformation by explosion has been studied. A model which enables to calculate dispergating limit value considering dependence of coefficient of grain-boundary diffusion on degree of deformation and temperature is constructed. The results of calculations by the offered formula and their comparing to experimental data show satisfactory coincidence. A rejection is 3–5%. It is set that the intensive growing shallow under the action of high-speed flowage the explosion of alloyed high-strength steels takes place at the degrees of deformation 20–30%. Increase of degree of deformation to 30–40% does not cause the change of size of grain. At deformations more than 40–50% the accumulated flowage causes additional local warming-up of material and development of recrystallizational processes, sizes of grain increase as a result. At deformations higher 50–60% appearances of cracks in materials is possible.Π˜Π·ΡƒΡ‡Π΅Π½Π° Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ Ρ€Π°Π·ΠΌΠ΅Ρ€Π° Π·Π΅Ρ€Π½Π° Π»Π΅Π³ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… высокопрочных сталСй аустСнитного, Π±Π΅ΠΉΠ½ΠΈΡ‚Π½ΠΎΠ³ΠΎ, ΠΌΠ°Ρ€Ρ‚Π΅Π½ΡΠΈΡ‚Π½ΠΎΡΡ‚Π°Ρ€Π΅ΡŽΡ‰Π΅Π³ΠΎ классов ΠΎΡ‚ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ ΠΈ стСпСни Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ ΠΏΡ€ΠΈ нСстационарной интСнсивной пластичСской Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ Π²Π·Ρ€Ρ‹Π²ΠΎΠΌ. ΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½Π° модСль, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰Π°Ρ Ρ€Π°ΡΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ ΠΏΡ€Π΅Π΄Π΅Π»Π° диспСргирования ΠΈ ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°ΡŽΡ‰Π°ΡΠ·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ коэффициСнта Π·Π΅Ρ€Π½ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π½ΠΎΠΉ Π΄ΠΈΡ„Ρ„ΡƒΠ·ΠΈΠΈ ΠΎΡ‚ стСпСни Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ расчСтов ΠΏΠΎ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΈ ΠΈΡ… сравнСниС с ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ Π΄Π°Π½Π½Ρ‹ΠΌΠΈ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ ΡƒΠ΄ΠΎΠ²Π»Π΅Ρ‚Π²ΠΎΡ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ совпадСниС. ΠžΡ‚ΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ составляСт 3-5%. УстановлСно, Ρ‡Ρ‚ΠΎ интСнсивноС ΠΈΠ·ΠΌΠ΅Π»ΡŒΡ‡Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ΄ дСйствиСм высокоскоростной пластичСской Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ Π²Π·Ρ€Ρ‹Π²ΠΎΠΌ высокопрочных сталСй происходит ΠΏΡ€ΠΈ стСпСнях Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ 20-30%. Π£Π²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ стСпСни Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ Π΄ΠΎ 30-40% Π½Π΅ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ измСнСнию Ρ€Π°Π·ΠΌΠ΅Ρ€Π° Π·Π΅Ρ€Π½Π°. ΠŸΡ€ΠΈ дСформациях Π±ΠΎΠ»Π΅Π΅ 40-50% накоплСнная пластичСская дСформация, Π²Ρ‹Π·Ρ‹Π²Π°ΡŽΡ‰Π°Ρ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π»ΠΎΠΊΠ°Π»ΡŒΠ½Ρ‹ΠΉ Ρ€Π°Π·ΠΎΠ³Ρ€Π΅Π² ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°, обусловливаСт Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ рСкристаллизационных процСссов, Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ Ρ‡Π΅Π³ΠΎ Ρ€Π°Π·ΠΌΠ΅Ρ€Ρ‹ Π·Π΅Ρ€Π½Π° ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°ΡŽΡ‚ΡΡ. ΠŸΡ€ΠΈ дСформациях Π²Ρ‹ΡˆΠ΅ 50-60% Π² ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°Ρ… Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ появлСниС Ρ‚Ρ€Π΅Ρ‰ΠΈΠ½

    Estimation of Chip Crushing Rate

    No full text
    In order to analyze chip crushing rate it is proposed to use a sieve analysis and methods of mathematical statistics which are applied in powder metallurgy, peat and coal industries and other branches. Estimation in fluctuation of chip size, stability of its crushing under various cutting conditions, materials and changes of machining conditions have been investigated on the basis of chip fractional composition. Distribution curves and histograms show dominant size of chips. The sieve analysis of chip crushing rate has been applied in deep drilling of steel and grey cast iron

    Optimization of Wastewater Treatment Process on Energy Costs at Truck and Tractor Washing Posts

    Get PDF
    The paper considers a process pertaining to purification of oily effluents while using electrocoagulation, electro-flotation and an electromagnetic hydro-cyclone, implemented with the help of a laboratory unit (Patent of the Republic of Belarus for the invention No 21229). The investigations have been carried out with the purpose to optimize specific energy consumption for the process of cleaning fuel and lubricants effluents. The following investigation methods have been applied – a literature review, a comparative analysis, an experiment execution, a mathematical modeling. Content of oil products in wastewater before and after treatment has been evaluated in the analytical laboratory of the Belarusian State Agrarian Technical University in accordance with standard methods. Purification of the oily effluents has been made with the help of a laboratory unit while using electroflotocoagulation method with removal of floated sludge in an electromagnetic hydrocyclone. This cleaning method makes it possible to increase a degree of water disinfection, provides a closed water supply, rational use of water resources, reduction of harmful effects of pollutants on the environment. An experimental design technique has been worked out and a three-level Box – Behnken design has been implemented in the paper. The problem concerning optimization of the purification process on energy costs has been solved without worsening the required concentration indices of petroleum products in water after treatment . Mathematical models have been obtained and optimal purification modes have been determined at the lowest specific energy costs and with sufficiently high degree of purification. Significance of regression coefficients has been estimated by Student criterion. It has been established that while using the proposed unit it is possible to obtain a degree of wastewater purification at automotive equipment washing stations with its performanceΒ GΒ = 0.7 l/s, current densityΒ jΒ = 150 A/m2. The degree of purification, determined by ratio of pollutant concentrations before and after purification, is up to 99.9 %. The results can be used in implementation of microprocessor control of cleaning mode while taking an initial concentration of pollution, unit capability, current density of an electroflotocoagulator as control action factors

    Rectification of cast through foam-ceramic filters is an effective method of metal quality improvement

    No full text
    The article presents comparative analysis of various classes of sponge permeable materials according to their structural, hydrodynamic, physicomechanical and filter characteristics. It is shown that foam-ceramic filters are most effective for rectification of metal alloys of nonmetal lie inclusions
    corecore