118 research outputs found
Disturbances of electron density in the high latitude upper (F-region) ionosphere induced by X-mode HF pump waves from EISCAT UHF radar observations
The paper presents experimental results concerning disturbances of electron density in the high latitude ionosphere F-region, induced by powerfulHF radio waves (pump waves) with extraordinary (X-mode) polarization. The experiments were carried out at the EISCAT/Heating facility at Tromsø, Norway. The EISCAT UHF incoherent scatter radar (ISR), running at 930 MHz, co-located with a heating facility, was used to detect the disturbances of electron density. In the course of the experiments, the X-mode HF pump waves radiated into the F-region towards the magnetic zenith at different pump frequencies and ratios of the pump frequency to the critical frequency of the F2 layer.The effective radiated power was ERP = 360–820 MW. An increase in electron densities was found in a wide altitude range, giving rise to field-aligned ducts with enhanced electron density. The features and behavior of the ducts were investigated. It was revealed that the ducts are formed under quiet background geophysical conditions in a wide altitude range up to the upper altitude limit of EISCAT ISR measurements, when the pump frequencies were both below and above the critical frequency of the F2 layer (fH ≤ foF2 or fH > foF2). A plausible formation mechanism of the ducts is discussed.Представлены результаты экспериментальных исследований возмущений электронной концентрацииNe в высокоширотной F-области ионосферы, вызванные воздействием мощных КВ-радиоволн необыкновенной (Х-мода) поляризации. Эксперименты выполнялись на КВ нагревном стенде EISCAT/ Heating в г. Тромсё, Норвегия при эффективной мощности излучения 360–820 МВт. В качестве средства диагностики возмущений Ne использовался EISCAT радар некогерентного рассеяния радиоволн (НР) на частоте 930 МГц, пространственно совмещенный с КВ нагревным стендом. Обнаружено возрастание Ne в широком диапазоне высот, которое формирует каналы повышенной электронной плотности, вытянутые вдоль магнитного поля Земли. Исследованы характеристики и условия создания каналов. Обсуждается возможный механизм формирования каналов Ne при Х-нагреве высокоширотной F-области ионосферы
Phenomena induced by powerful HF pumping towards magnetic zenith with a frequency near the F-region critical frequency and the third electron gyro harmonic frequency
Multi-instrument observational data from an experiment on 13 October 2006 at the EISCAT/HEATING facility at Tromsø, Norway are analysed. The experiment was carried out in the evening hours when the electron density in the F-region dropped, and the HF pump frequency <I>f<sub>H</sub></I> was near and then above the critical frequency of the F2 layer. The distinctive feature of this experiment is that the pump frequency was just below the third electron gyro harmonic frequency, while both the HF pump beam and UHF radar beam were directed towards the magnetic zenith (MZ). The HF pump-induced phenomena were diagnosed with several instruments: the bi-static HF radio scatter on the London-Tromsø-St. Petersburg path, the CUTLASS radar in Hankasalmi (Finland), the European Incoherent Scatter (EISCAT) UHF radar at Tromsø and the Tromsø ionosonde (dynasonde). The results show thermal electron excitation of the HF-induced striations seen simultaneously from HF bi-static scatter and CUTLASS radar observations, accompanied by increases of electron temperature when the heater frequency was near and then above the critical frequency of the F2 layer by up to 0.4 MHz. An increase of the electron density up to 25% accompanied by strong HF-induced electron heating was observed, only when the heater frequency was near the critical frequency and just below the third electron gyro harmonic frequency. It is concluded that the combined effect of upper hybrid resonance and gyro resonance at the same altitude gives rise to strong electron heating, the excitation of striations, HF ray trapping and extension of HF waves to altitudes where they can excite Langmuir turbulence and fluxes of electrons accelerated to energies that produce ionization
Integration of Golgi trafficking and growth factor signaling by the lipid phosphatase SAC1
When a growing cell expands, lipids and proteins must be delivered to its periphery. Although this phenomenon has been observed for decades, it remains unknown how the secretory pathway responds to growth signaling. We demonstrate that control of Golgi phosphatidylinositol-4-phosphate (PI(4)P) is required for growth-dependent secretion. The phosphoinositide phosphatase SAC1 accumulates at the Golgi in quiescent cells and down-regulates anterograde trafficking by depleting Golgi PI(4)P. Golgi localization requires oligomerization of SAC1 and recruitment of the coat protein (COP) II complex. When quiescent cells are stimulated by mitogens, SAC1 rapidly shuttles back to the endoplasmic reticulum (ER), thus releasing the brake on Golgi secretion. The p38 mitogen-activated kinase (MAPK) pathway induces dissociation of SAC1 oligomers after mitogen stimulation, which triggers COP-I–mediated retrieval of SAC1 to the ER. Inhibition of p38 MAPK abolishes growth factor–induced Golgi-to-ER shuttling of SAC1 and slows secretion. These results suggest direct roles for p38 MAPK and SAC1 in transmitting growth signals to the secretory machinery
Loss of AP-3 function affects spontaneous and evoked release at hippocampal mossy fiber synapses
Synaptic vesicle (SV) exocytosis mediating neurotransmitter release occurs
spontaneously at low intraterminal calcium concentrations and is stimulated by
a rise in intracellular calcium. Exocytosis is compensated for by the
reformation of vesicles at plasma membrane and endosomes. Although the adaptor
complex AP-3 was proposed to be involved in the formation of SVs from
endosomes, whether its function has an indirect effect on exocytosis remains
unknown. Using mocha mice, which are deficient in functional AP-3, we identify
an AP-3-dependent tetanus neurotoxin-resistant asynchronous release that can be
evoked at hippocampal mossy fiber (MF) synapses. Presynaptic targeting of the
tetanus neurotoxin-resistant vesicle soluble N-ethylmaleimide-sensitive factor
attachment protein receptor (SNARE) tetanus neurotoxin-insensitive
vesicle-associated membrane protein (TI-VAMP) is lost in mocha hippocampal MF
terminals, whereas the localization of synaptobrevin 2 is unaffected. In
addition, quantal release in mocha cultures is more frequent and more sensitive
to sucrose. We conclude that lack of AP-3 results in more constitutive
secretion and loss of an asynchronous evoked release component, suggesting an
important function of AP-3 in regulating SV exocytosis at MF terminals
HIV-1 Nef Employs Two Distinct Mechanisms to Modulate Lck Subcellular Localization and TCR Induced Actin Remodeling
The Nef protein acts as critical factor during HIV pathogenesis by increasing HIV replication in vivo via the modulation of host cell vesicle transport and signal transduction processes. Recent studies suggested that Nef alters formation and function of immunological synapses (IS), thereby modulating exogenous T-cell receptor (TCR) stimulation to balance between partial T cell activation required for HIV-1 spread and prevention of activation induced cell death. Alterations of IS function by Nef include interference with cell spreading and actin polymerization upon TCR engagement, a pronounced intracellular accumulation of the Src kinase Lck and its reduced IS recruitment. Here we use a combination of Nef mutagenesis and pharmacological inhibition to analyze the relative contribution of these effects to Nef mediated alterations of IS organization and function on TCR stimulatory surfaces. Inhibition of actin polymerization and IS recruitment of Lck were governed by identical Nef determinants and correlated well with Nef's association with Pak2 kinase activity. In contrast, Nef mediated Lck endosomal accumulation was separable from these effects, occurred independently of Pak2, required integrity of the microtubule rather than the actin filament system and thus represents a distinct Nef activity. Finally, reduction of TCR signal transmission by Nef was linked to altered actin remodeling and Lck IS recruitment but did not require endosomal Lck rerouting. Thus, Nef affects IS function via multiple independent mechanisms to optimize virus replication in the infected host
Nef Decreases HIV-1 Sensitivity to Neutralizing Antibodies that Target the Membrane-proximal External Region of TMgp41
Primate lentivirus nef is required for sustained virus replication in vivo and accelerated progression to AIDS. While exploring the mechanism by which Nef increases the infectivity of cell-free virions, we investigated a functional link between Nef and Env. Since we failed to detect an effect of Nef on the quantity of virion-associated Env, we searched for qualitative changes by examining whether Nef alters HIV-1 sensitivity to agents that target distinct features of Env. Nef conferred as much as 50-fold resistance to 2F5 and 4E10, two potent neutralizing monoclonal antibodies (nAbs) that target the membrane proximal external region (MPER) of TMgp41. In contrast, Nef had no effect on HIV-1 neutralization by MPER-specific nAb Z13e1, by the peptide inhibitor T20, nor by a panel of nAbs and other reagents targeting gp120. Resistance to neutralization by 2F5 and 4E10 was observed with Nef from a diverse range of HIV-1 and SIV isolates, as well as with HIV-1 virions bearing Env from CCR5- and CXCR4-tropic viruses, clade B and C viruses, or primary isolates. Functional analysis of a panel of Nef mutants revealed that this activity requires Nef myristoylation but that it is genetically separable from other Nef functions such as the ability to enhance virus infectivity and to downregulate CD4. Glycosylated-Gag from MoMLV substituted for Nef in conferring resistance to 2F5 and 4E10, indicating that this activity is conserved in a retrovirus that does not encode Nef. Given the reported membrane-dependence of MPER-recognition by 2F5 and 4E10, in contrast to the membrane-independence of Z13e1, the data here is consistent with a model in which Nef alters MPER recognition in the context of the virion membrane. Indeed, Nef and Glycosylated-Gag decreased the efficiency of virion capture by 2F5 and 4E10, but not by other nAbs. These studies demonstrate that Nef protects lentiviruses from one of the most broadly-acting classes of neutralizing antibodies. This newly discovered activity for Nef has important implications for anti-HIV-1 immunity and AIDS pathogenesis
Nef Alleles from All Major HIV-1 Clades Activate Src-Family Kinases and Enhance HIV-1 Replication in an Inhibitor-Sensitive Manner
The HIV-1 accessory factor Nef is essential for high-titer viral replication and AIDS progression. Nef function requires interaction with many host cell proteins, including specific members of the Src kinase family. Here we explored whether Src-family kinase activation is a conserved property of Nef alleles from a wide range of primary HIV-1 isolates and their sensitivity to selective pharmacological inhibitors. Representative Nef proteins from the major HIV-1 subtypes A1, A2, B, C, F1, F2, G, H, J and K strongly activated Hck and Lyn as well as c-Src to a lesser extent, demonstrating for the first time that Src-family kinase activation is a highly conserved property of primary M-group HIV-1 Nef isolates. Recently, we identified 4-amino substituted diphenylfuropyrimidines (DFPs) that selectively inhibit Nef-dependent activation of Src-family kinases as well as HIV replication. To determine whether DFP compounds exhibit broad-spectrum Nef-dependent antiretroviral activity against HIV-1, we first constructed chimeric forms of the HIV-1 strain NL4-3 expressing each of the primary Nef alleles. The infectivity and replication of these Nef chimeras was indistinguishable from that of wild-type virus in two distinct cell lines (U87MG astroglial cells and CEM-T4 lymphoblasts). Importantly, the 4-aminopropanol and 4-aminobutanol derivatives of DFP potently inhibited the replication of all chimeric forms of HIV-1 in both U87MG and CEM-T4 cells in a Nef-dependent manner. The antiretroviral effects of these compounds correlated with inhibition of Nef-dependent activation of endogenous Src-family kinases in the HIV-infected cells. Our results demonstrate that the activation of Hck, Lyn and c-Src by Nef is highly conserved among all major clades of HIV-1 and that selective targeting of this pathway uniformly inhibits HIV-1 replication
BKV Agnoprotein Interacts with α-Soluble N-Ethylmaleimide-Sensitive Fusion Attachment Protein, and Negatively Influences Transport of VSVG-EGFP
Background: The human polyomavirus BK (BKV) infects humans worldwide and establishes a persistent infection in the kidney. The BK virus genome encodes three regulatory proteins, large and small tumor-antigen and the agnoprotein, as well as the capsid proteins VP1 to VP3. Agnoprotein is conserved among BKV, JC virus (JCV) and SV40, and agnoprotein-deficient mutants reveal reduced viral propagation. Studies with JCV and SV40 indicate that their agnoproteins may be involved in transcription, replication and/or nuclear and cellular release of the virus. However, the exact function(s) of agnoprotein of BK virus remains elusive. Principal Findings: As a strategy of exploring the functions of BKV agnoprotein, we decided to look for cellular interaction partners for the viral protein. Several partners were identified by yeast two-hybrid assay, among them a-SNAP which is involved in disassembly of vesicles during secretion. BKV agnoprotein and a-SNAP were found to partially co-localize in cells, and a complex consisting of agnoprotein and a-SNAP could be co-immunoprecipitated from cells ectopically expressing the proteins as well as from BKV-transfected cells. The N-terminal part of the agnoprotein was sufficient for the interaction with a-SNAP. Finally, we could show that BKV agnoprotein negatively interferes with secretion of VSVG-EGFP reporter suggesting that agnoprotein may modulate exocytosis. Conclusions: We have identified the first cellular interaction partner for BKV agnoprotein. The most N-terminal part of BKV agnoprotein is involved in the interaction with a-SNAP. Presence of BKV agnoprotein negatively interferes with secretion of VSVG-EGFP reporter
- …