29 research outputs found

    Asymmetry in the effect of magnetic field on photon detection and dark counts in bended nanostrips

    Full text link
    Current crowding in the bends of superconducting nano-structures not only restricts measurable critical current in such structures but also redistributes local probabilities for dark and light counts to appear. Using structures from strips in the form of a square spiral which contain bends with the very same curvature with respect to the directions of bias current and external magnetic field, we have shown that dark counts as well as light counts at small photon energies originate from areas around the bends. The minimum in the rate of dark counts reproduces the asymmetry of the maximum critical current density as function of the magnetic field. Contrary, the minimum in the rate of light counts demonstrate opposite asymmetry. The rate of light counts become symmetric at large currents and fields. Comparing locally computed absorption probabilities for photons and the simulated threshold detection current we found the approximate locations of areas near bends which deliver asymmetric light counts. Any asymmetry is absent in Archimedean spiral structures without bends

    Effect of the wire width on the intrinsic detection efficiency of superconducting-nanowire single-photon detectors

    Full text link
    Thorough spectral study of the intrinsic single-photon detection efficiency in superconducting TaN and NbN nanowires with different widths shows that the experimental cut-off in the efficiency at near-infrared wavelengths is most likely caused by the local deficiency of Cooper pairs available for current transport. For both materials the reciprocal cut-off wavelength scales with the wire width whereas the scaling factor quantitatively agrees with the hot-spot detection models. Comparison of the experimental data with vortex-assisted detection scenarios shows that these models predict a stronger dependence of the cut-off wavelength on the wire width.Comment: 16 pages, 6 figure

    Neuroactive substances specifically modulate rhythmic body contractions in the nerveless metazoon Tethya wilhelma (Demospongiae, Porifera)

    Get PDF
    BACKGROUND: Sponges (Porifera) are nerve- and muscleless metazoa, but display coordinated motor reactions. Therefore, they represent a valuable phylum to investigate coordination systems, which evolved in a hypothetical Urmetazoon prior to the central nervous system (CNS) of later metazoa. We have chosen the contractile and locomotive species Tethya wilhelma (Demospongiae, Hadromerida) as a model system for our research, using quantitative analysis based on digital time lapse imaging. In order to evaluate candidate coordination pathways, we extracorporeally tested a number of chemical messengers, agonists and antagonists known from chemical signalling pathways in animals with CNS. RESULTS: Sponge body contraction of T. wilhelma was induced by caffeine, glycine, serotonine, nitric oxide (NO) and extracellular cyclic adenosine monophosphate (cAMP). The induction by glycine and cAMP followed patterns varying from other substances. Induction by cAMP was delayed, while glycine lead to a bi-phasic contraction response. The frequency of the endogenous contraction rhythm of T. wilhelma was significantly decreased by adrenaline and NO, with the same tendency for cAMP and acetylcholine. In contrast, caffeine and glycine increased the contraction frequency. The endogenous rhythm appeared irregular during application of caffeine, adrenaline, NO and cAMP. Caffeine, glycine and NO attenuated the contraction amplitude. All effects on the endogenous rhythm were neutralised by the washout of the substances from the experimental reactor system. CONCLUSION: Our study demonstrates that a number of chemical messengers, agonists and antagonists induce contraction and/or modulate the endogenous contraction rhythm and amplitude of our nerveless model metazoon T. wilhelma. We conclude that a relatively complex system of chemical messengers regulates the contraction behaviour through auto- and paracrine signalling, which is presented in a hypothetical model. We assume that adrenergic, adenosynergic and glycinergic pathways, as well as pathways based on NO and extracellular cAMP are candidates for the regulation and timing of the endogenous contraction rhythm within pacemaker cells, while GABA, glutamate and serotonine are candidates for the direct coordination of the contractile cells

    Persistent Cellular Motion Control and Trapping Using Mechanotactic Signaling

    Get PDF
    Chemotactic signaling and the associated directed cell migration have been extensively studied owing to their importance in emergent processes of cellular aggregation. In contrast, mechanotactic signaling has been relatively overlooked despite its potential for unique ways to artificially signal cells with the aim to effectively gain control over their motile behavior. The possibility of mimicking cellular mechanotactic signals offers a fascinating novel strategy to achieve targeted cell delivery for in vitro tissue growth if proven to be effective with mammalian cells. Using (i) optimal level of extracellular calcium ([Ca2[superscript +] ][subscript ext] = 3 mM) we found, (ii) controllable fluid shear stress of low magnitude (σ < 0.5 Pa), and (iii) the ability to swiftly reverse flow direction (within one second), we are able to successfully signal Dictyostelium discoideum amoebae and trigger migratory responses with heretofore unreported control and precision. Specifically, we are able to systematically determine the mechanical input signal required to achieve any predetermined sequences of steps including straightforward motion, reversal and trapping. The mechanotactic cellular trapping is achieved for the first time and is associated with a stalling frequency of 0.06 ~ 0.1 Hz for a reversing direction mechanostimulus, above which the cells are effectively trapped while maintaining a high level of directional sensing. The value of this frequency is very close to the stalling frequency recently reported for chemotactic cell trapping [Meier B, et al. (2011) Proc Natl Acad Sci USA 108:11417–11422], suggesting that the limiting factor may be the slowness of the internal chemically-based motility apparatus.SUTD-MIT International Design Centre (Grant IDG31400104

    Differential Regulation of PDE5 Expression in Left and Right Ventricles of Feline Hypertrophy Models

    Get PDF
    Though long known to affect smooth muscle biology, recent studies indicate that phosphodiesterase 5 (PDE5) is also expressed in myocardium. Recognizing that the regulation of PDE5 in hypertrophy is not well understood, we assessed the response of PDE5 expression and the level of cGMP-dependent kinase I (cGKI) in the left and right ventricles of feline hypertrophy models.Using a cDNA library of feline aortic smooth muscle cells, we identified and cloned PDE5 cDNA for the first time in this species. The sequence shares 98% identity with its human orthologue at the amino acid level. E. coli expression of the cloned allele allowed selection of antibodies with appropriate specificity, facilitating the analysis of PDE5 expression in feline models created by selective proximal aortic (Ao) or pulmonary artery (PA) banding that resulted in hypertrophy of the left ventricle (LV) and right ventricle (RV), respectively. We demonstrated that PDE5 expression responded differentially with a decreased expression in the LV and an increased expression in the RV in the Ao-banded model. Similarly, in the PA-banded model, LV showed reduced expression while the RV expression was unaltered. In addition, the expression of cGKI was significantly decreased in the RV of Ao-banded group, correlating inversely with the increase in PDE5 expression.The differential regulation of PDE5 and cGKI expression suggests that the mechanisms involved in hypertrophy could be different in RV vs. LV. Reciprocal PDE5 and cGKI expression in the RV of Ao-banded model suggests functional significance for PDE5 up-regulation

    PTEN redundancy: overexpressing lpten, a homolog of Dictyostelium discoideum ptenA, the ortholog of human PTEN, rescues all behavioral defects of the mutant ptenA-.

    No full text
    Mutations in the tumor suppressor gene PTEN are associated with a significant proportion of human cancers. Because the human genome also contains several homologs of PTEN, we considered the hypothesis that if a homolog, functionally redundant with PTEN, can be overexpressed, it may rescue the defects of a PTEN mutant. We have performed an initial test of this hypothesis in the model system Dictyostelium discoideum, which contains an ortholog of human PTEN, ptenA. Deletion of ptenA results in defects in motility, chemotaxis, aggregation and multicellular morphogenesis. D. discoideum also contains lpten, a newly discovered homolog of ptenA. Overexpressing lpten completely rescues all developmental and behavioral defects of the D. discoideum mutant ptenA-. This hypothesis must now be tested in human cells

    Temperature-dependence of detection efficiency in NbN and TaN SNSPD

    No full text
    We present systematic measurements of the temperature-dependence of detection efficiencies in TaN and NbN superconducting nanowire single-photon detectors. We have observed a clear increase of the cut-off wavelength with decreasing temperature that we can qualitatively describe by a temperaturedependent diffusion coefficient of the quasi-particles created after photon absorption. Furthermore, the detection efficiency at wavelengths shorter than the cut-off wavelength, as well as at longer wavelengths, exhibit distinct temperature dependencies. Underlying causes and possible consequences for microscopic detection models are discussed
    corecore