35 research outputs found

    Symmetries, Cluster Synchronization, and Isolated Desynchronization in Complex Networks

    Full text link
    Synchronization is of central importance in power distribution, telecommunication, neuronal, and biological networks. Many networks are observed to produce patterns of synchronized clusters, but it has been difficult to predict these clusters or understand the conditions under which they form, except for in the simplest of networks. In this article, we shed light on the intimate connection between network symmetry and cluster synchronization. We introduce general techniques that use network symmetries to reveal the patterns of synchronized clusters and determine the conditions under which they persist. The connection between symmetry and cluster synchronization is experimentally explored using an electro-optic network. We experimentally observe and theoretically predict a surprising phenomenon in which some clusters lose synchrony while leaving others synchronized. The results could guide the design of new power grid systems or lead to new understanding of the dynamical behavior of networks ranging from neural to social

    Complete Characterization of Stability of Cluster Synchronization in Complex Dynamical Networks

    Full text link
    Synchronization is an important and prevalent phenomenon in natural and engineered systems. In many dynamical networks, the coupling is balanced or adjusted in order to admit global synchronization, a condition called Laplacian coupling. Many networks exhibit incomplete synchronization, where two or more clusters of synchronization persist, and computational group theory has recently proved to be valuable in discovering these cluster states based upon the topology of the network. In the important case of Laplacian coupling, additional synchronization patterns can exist that would not be predicted from the group theory analysis alone. The understanding of how and when clusters form, merge, and persist is essential for understanding collective dynamics, synchronization, and failure mechanisms of complex networks such as electric power grids, distributed control networks, and autonomous swarming vehicles. We describe here a method to find and analyze all of the possible cluster synchronization patterns in a Laplacian-coupled network, by applying methods of computational group theory to dynamically-equivalent networks. We present a general technique to evaluate the stability of each of the dynamically valid cluster synchronization patterns. Our results are validated in an electro-optic experiment on a 5 node network that confirms the synchronization patterns predicted by the theory.Comment: 6 figure

    Electronic circuit implementation of chaos synchronization

    Full text link
    In this paper, an electronic circuit implementation of a robustly chaotic two-dimensional map is presented. Two such electronic circuits are realized. One of the circuits is configured as the driver and the other circuit is configured as the driven system. Synchronization of chaos between the driver and the driven system is demonstrated

    A Unified Approach to Attractor Reconstruction

    Full text link
    In the analysis of complex, nonlinear time series, scientists in a variety of disciplines have relied on a time delayed embedding of their data, i.e. attractor reconstruction. The process has focused primarily on heuristic and empirical arguments for selection of the key embedding parameters, delay and embedding dimension. This approach has left several long-standing, but common problems unresolved in which the standard approaches produce inferior results or give no guidance at all. We view the current reconstruction process as unnecessarily broken into separate problems. We propose an alternative approach that views the problem of choosing all embedding parameters as being one and the same problem addressable using a single statistical test formulated directly from the reconstruction theorems. This allows for varying time delays appropriate to the data and simultaneously helps decide on embedding dimension. A second new statistic, undersampling, acts as a check against overly long time delays and overly large embedding dimension. Our approach is more flexible than those currently used, but is more directly connected with the mathematical requirements of embedding. In addition, the statistics developed guide the user by allowing optimization and warning when embedding parameters are chosen beyond what the data can support. We demonstrate our approach on uni- and multivariate data, data possessing multiple time scales, and chaotic data. This unified approach resolves all the main issues in attractor reconstruction.Comment: 22 pages, revised version as submitted to CHAOS. Manuscript is currently under review. 4 Figures, 31 reference

    Synchronization in small-world systems

    Full text link
    We quantify the dynamical implications of the small-world phenomenon. We consider the generic synchronization of oscillator networks of arbitrary topology, and link the linear stability of the synchronous state to an algebraic condition of the Laplacian of the graph. We show numerically that the addition of random shortcuts produces improved network synchronizability. Further, we use a perturbation analysis to place the synchronization threshold in relation to the boundaries of the small-world region. Our results also show that small-worlds synchronize as efficiently as random graphs and hypercubes, and more so than standard constructive graphs

    Unifying framework for synchronization of coupled dynamical systems

    Get PDF
    A definition of synchronization of coupled dynamical systems is provided. We discuss how such a definition allows one to identify a unifying framework for synchronization of dynamical systems, and show how to encompass some of the different phenomena described so far in the context of synchronization of chaotic systems

    Regularization of Tunneling Rates with Quantum Chaos

    Full text link
    We study tunneling in various shaped, closed, two-dimensional, flat potential, double wells by calculating the energy splitting between symmetric and anti-symmetric state pairs. For shapes that have regular or nearly regular classical behavior (e.g. rectangular or circular) the tunneling rates vary greatly over wide ranges often by several orders of magnitude. However, for well shapes that admit more classically chaotic behavior (e.g. the stadium, the Sinai billiard) the range of tunneling rates narrows, often by orders of magnitude. This dramatic narrowing appears to come from destabilization of periodic orbits in the regular wells that produce the largest and smallest tunneling rates and causes the splitting vs. energy relation to take on a possibly universal shape. It is in this sense that we say the quantum chaos regularizes the tunneling rates

    Detecting Determinism in High Dimensional Chaotic Systems

    Full text link
    A method based upon the statistical evaluation of the differentiability of the measure along the trajectory is used to identify in high dimensional systems. The results show that the method is suitable for discriminating stochastic from deterministic systems even if the dimension of the latter is as high as 13. The method is shown to succeed in identifying determinism in electro-encephalogram signals simulated by means of a high dimensional system.Comment: 8 pages (RevTeX 3 style), 5 EPS figures, submitted to Phys. Rev. E (25 apr 2001
    corecore