35 research outputs found
Symmetries, Cluster Synchronization, and Isolated Desynchronization in Complex Networks
Synchronization is of central importance in power distribution,
telecommunication, neuronal, and biological networks. Many networks are
observed to produce patterns of synchronized clusters, but it has been
difficult to predict these clusters or understand the conditions under which
they form, except for in the simplest of networks. In this article, we shed
light on the intimate connection between network symmetry and cluster
synchronization. We introduce general techniques that use network symmetries to
reveal the patterns of synchronized clusters and determine the conditions under
which they persist. The connection between symmetry and cluster synchronization
is experimentally explored using an electro-optic network. We experimentally
observe and theoretically predict a surprising phenomenon in which some
clusters lose synchrony while leaving others synchronized. The results could
guide the design of new power grid systems or lead to new understanding of the
dynamical behavior of networks ranging from neural to social
Complete Characterization of Stability of Cluster Synchronization in Complex Dynamical Networks
Synchronization is an important and prevalent phenomenon in natural and
engineered systems. In many dynamical networks, the coupling is balanced or
adjusted in order to admit global synchronization, a condition called Laplacian
coupling. Many networks exhibit incomplete synchronization, where two or more
clusters of synchronization persist, and computational group theory has
recently proved to be valuable in discovering these cluster states based upon
the topology of the network. In the important case of Laplacian coupling,
additional synchronization patterns can exist that would not be predicted from
the group theory analysis alone. The understanding of how and when clusters
form, merge, and persist is essential for understanding collective dynamics,
synchronization, and failure mechanisms of complex networks such as electric
power grids, distributed control networks, and autonomous swarming vehicles. We
describe here a method to find and analyze all of the possible cluster
synchronization patterns in a Laplacian-coupled network, by applying methods of
computational group theory to dynamically-equivalent networks. We present a
general technique to evaluate the stability of each of the dynamically valid
cluster synchronization patterns. Our results are validated in an electro-optic
experiment on a 5 node network that confirms the synchronization patterns
predicted by the theory.Comment: 6 figure
Electronic circuit implementation of chaos synchronization
In this paper, an electronic circuit implementation of a robustly chaotic
two-dimensional map is presented. Two such electronic circuits are realized.
One of the circuits is configured as the driver and the other circuit is
configured as the driven system. Synchronization of chaos between the driver
and the driven system is demonstrated
A Unified Approach to Attractor Reconstruction
In the analysis of complex, nonlinear time series, scientists in a variety of
disciplines have relied on a time delayed embedding of their data, i.e.
attractor reconstruction. The process has focused primarily on heuristic and
empirical arguments for selection of the key embedding parameters, delay and
embedding dimension. This approach has left several long-standing, but common
problems unresolved in which the standard approaches produce inferior results
or give no guidance at all. We view the current reconstruction process as
unnecessarily broken into separate problems. We propose an alternative approach
that views the problem of choosing all embedding parameters as being one and
the same problem addressable using a single statistical test formulated
directly from the reconstruction theorems. This allows for varying time delays
appropriate to the data and simultaneously helps decide on embedding dimension.
A second new statistic, undersampling, acts as a check against overly long time
delays and overly large embedding dimension. Our approach is more flexible than
those currently used, but is more directly connected with the mathematical
requirements of embedding. In addition, the statistics developed guide the user
by allowing optimization and warning when embedding parameters are chosen
beyond what the data can support. We demonstrate our approach on uni- and
multivariate data, data possessing multiple time scales, and chaotic data. This
unified approach resolves all the main issues in attractor reconstruction.Comment: 22 pages, revised version as submitted to CHAOS. Manuscript is
currently under review. 4 Figures, 31 reference
Synchronization in small-world systems
We quantify the dynamical implications of the small-world phenomenon. We
consider the generic synchronization of oscillator networks of arbitrary
topology, and link the linear stability of the synchronous state to an
algebraic condition of the Laplacian of the graph. We show numerically that the
addition of random shortcuts produces improved network synchronizability.
Further, we use a perturbation analysis to place the synchronization threshold
in relation to the boundaries of the small-world region. Our results also show
that small-worlds synchronize as efficiently as random graphs and hypercubes,
and more so than standard constructive graphs
Unifying framework for synchronization of coupled dynamical systems
A definition of synchronization of coupled dynamical systems is provided. We discuss how such a definition
allows one to identify a unifying framework for synchronization of dynamical systems, and show how to
encompass some of the different phenomena described so far in the context of synchronization of chaotic
systems
Regularization of Tunneling Rates with Quantum Chaos
We study tunneling in various shaped, closed, two-dimensional, flat
potential, double wells by calculating the energy splitting between symmetric
and anti-symmetric state pairs. For shapes that have regular or nearly regular
classical behavior (e.g. rectangular or circular) the tunneling rates vary
greatly over wide ranges often by several orders of magnitude. However, for
well shapes that admit more classically chaotic behavior (e.g. the stadium, the
Sinai billiard) the range of tunneling rates narrows, often by orders of
magnitude. This dramatic narrowing appears to come from destabilization of
periodic orbits in the regular wells that produce the largest and smallest
tunneling rates and causes the splitting vs. energy relation to take on a
possibly universal shape. It is in this sense that we say the quantum chaos
regularizes the tunneling rates
Detecting Determinism in High Dimensional Chaotic Systems
A method based upon the statistical evaluation of the differentiability of
the measure along the trajectory is used to identify in high dimensional
systems. The results show that the method is suitable for discriminating
stochastic from deterministic systems even if the dimension of the latter is as
high as 13. The method is shown to succeed in identifying determinism in
electro-encephalogram signals simulated by means of a high dimensional system.Comment: 8 pages (RevTeX 3 style), 5 EPS figures, submitted to Phys. Rev. E
(25 apr 2001