2 research outputs found

    Results from the ARTEMIS DISK Global Antifungal Surveillance Study, 1997 to 2007: a 10.5-Year Analysis of Susceptibilities of Candida Species to Fluconazole and Voriconazole as Determined by CLSI Standardized Disk Diffusion â–¿

    Get PDF
    Fluconazole in vitro susceptibility test results for 256,882 isolates of Candida spp. were collected from 142 sites in 41 countries from June 1997 to December 2007. Data were collected for 197,619 isolates tested with voriconazole from 2001 to 2007. A total of 31 different species of Candida were isolated. Increased rates of isolation of the common non-albicans species C. glabrata (10.2% to 11.7%), C. tropicalis (5.4% to 8.0%), and C. parapsilosis (4.8% to 5.6%) were noted when the time periods 1997 to 2000 and 2005 to 2007 were compared. Investigators tested clinical isolates of Candida spp. by the CLSI M44-A disk diffusion method. Overall, 90.2% of Candida isolates tested were susceptible (S) to fluconazole; however, 13 of 31 species identified exhibited decreased susceptibility (<75% S), similar to that seen with the resistant (R) species C. glabrata and C. krusei. Among 197,619 isolates of Candida spp. tested against voriconazole, 95.0% were S and 3% were R. About 30% of fluconazole-R isolates of C. albicans, C. glabrata, C. tropicalis, C. rugosa, C. lipolytica, C. pelliculosa, C. apicola, C. haemulonii, C. humicola, C. lambica, and C. ciferrii remained S to voriconazole. An increase in fluconazole resistance over time was seen with C. parapsilosis, C. guilliermondii, C. lusitaniae, C. sake, and C. pelliculosa. Among the emerging fluconazole-R species were C. guilliermondii (11.4% R), C. inconspicua (53.2% R), C. rugosa (41.8% R), and C. norvegensis (40.7% R). The rates of isolation of C. rugosa, C. inconspicua, and C. norvegensis increased by 5- to 10-fold over the 10.5-year study period. C. guilliermondii and C. rugosa were most prominent in Latin America, whereas C. inconspicua and C. norvegensis were most common in Eastern European countries. This survey identifies several less-common species of Candida with decreased susceptibility to azoles. These organisms may pose a future threat to optimal antifungal therapy and underscore the importance of prompt and accurate species identification and antifungal susceptibility testing

    Results from the ARTEMIS DISK Global Antifungal Surveillance Study, 1997 to 2007: 10.5-year analysis of susceptibilities of noncandidal yeast species to fluconazole and voriconazole determined by CLSI standardized disk diffusion testing

    No full text
    Fluconazole in vitro susceptibility test results determined by the CLSI M44-A disk diffusion method for 11,240 isolates of noncandidal yeasts were collected from 134 study sites in 40 countries from June 1997 through December 2007. Data were collected for 8,717 yeast isolates tested with voriconazole from 2001 through 2007. A total of 22 different species/organism groups were isolated, of which Cryptococcus neoformans was the most common (31.2% of all isolates). Overall, Cryptococcus (32.9%), Saccharomyces (11.7%), Trichosporon (10.6%), and Rhodotorula (4.1%) were the most commonly identified genera. The overall percentages of isolates in each category ( susceptible, susceptible dose dependent, and resistant) were 78.0%, 9.5%, and 12.5% and 92.7%, 2.3%, and 5.0% for fluconazole and voriconazole, respectively. Less than 30% of fluconazole-resistant isolates of Cryptococcus spp., Cryptococcus albidus, Cryptococcus laurentii, Trichosporon beigelii/Trichosporon cutaneum, Rhodotorula spp., Rhodotorula rubra/Rhodotorula mucilaginosa, and Rhodotorula glutinis remained susceptible to voriconazole. Emerging resistance to fluconazole was documented among isolates of C. neoformans from the Asia-Pacific, Africa/Middle East, and Latin American regions but not among isolates from Europe or North America. This survey documents the continuing broad spectrum of activity of voriconazole against opportunistic yeast pathogens but identifies several of the less common species with decreased azole susceptibility. These organisms may pose a future threat to optimal antifungal therapy and emphasize the importance of prompt and accurate species identification
    corecore