3 research outputs found

    Negotiation Strategy of Divisible Tasks for Large Dataset Processing

    No full text
    International audienceMapReduce is a design pattern for processing large datasets on a cluster. Its performances depend on some data skews and on the runtime environment. In order to tackle these problems, we propose an adaptive multiagent system. The agents interact during the data processing and the dynamic task allocation is the outcome of negotiations. These negotiations aim at improving the workload partition among the nodes within a cluster and so decrease the runtime of the whole process. Moreover, since the negotiations are iterative the system is responsive in case of node performance variations. In this paper, we show how, when a task is divisible, an agent may split it in order to negotiate its subtasks

    Dynamic Workload-Based Partitioning Algorithms for Continuously Growing Databases

    No full text
    International audienceApplications with very large databases, where data items are continuously appended, are becoming more and more common. Thus, the development of efficient data partitioning is one of the main requirements to yield good performance. In the case of applications that have complex access patterns, e.g. scientific applications, workload-based partitioning could be exploited. However, existing workload-based approaches, which work in a static way, cannot be applied to very large databases. In this paper, we propose DynPart and DynPartGroup, two dynamic partitioning algorithms for continuously growing databases. These algorithms efficiently adapt the data partitioning to the arrival of new data elements by taking into account the affinity of new data with queries and fragments. In contrast to existing static approaches, our approach offers constant execution time, no matter the size of the database, while obtaining very good partitioning efficiency. We validated our solution through experimentation over real-world data; the results show its effectiveness
    corecore