34,683 research outputs found

    Correcting low-frequency noise with continuous measurement

    Get PDF
    Low-frequency noise presents a serious source of decoherence in solid-state qubits. When combined with a continuous weak measurement of the eigenstates, the low-frequency noise induces a second-order relaxation between the qubit states. Here we show that the relaxation provides a unique approach to calibrate the low-frequency noise in the time-domain. By encoding one qubit with two physical qubits that are alternatively calibrated, quantum logic gates with high fidelity can be performed.Comment: 10 pages, 3 figures, submitte

    Investigation of Partial Discharge in Solid Dielectric under DC Voltage

    No full text
    A partial discharge, or PD, is defined as an electrical discharge that is localized within only a part of the insulation between two separated conductors. Recent research on PD mainly focuses on the study of PD characteristics under AC voltage. Compared with DC, PD under AC is more serious and can be easily detected in terms of PD number. As the results of these concentrated research, the understanding of PD under AC condition has been significantly improved and features extracted from PD measurements have been used to diagnose the insulation condition of many power apparatus. Recently, rapid development in HVDC transmission and power grids connection, and widely applied DC cable and gas-insulated switchgear because of their benefit in long distance usage lead to an increasing concern about PD under DC. However, available study for the condition is little and related research is therefore necessary and essential for understanding the lifetime and reliability of apparatus. <br/

    Topology of Entanglement in Multipartite States with Translational Invariance

    Full text link
    The topology of entanglement in multipartite states with translational invariance is discussed in this article. Two global features are foundby which one can distinguish distinct states. These are the cyclic unit and the quantised geometric phase. Furthermore the topology is indicated by the fractional spin. Finally a scheme is presented for preparation of these types of states in spin chain systems, in which the degeneracy of the energy levels characterises the robustness of the states with translational invariance.Comment: major revision. accepted by EPJ

    Observations of Subarcsecond Bright Dots in the Transition Region above Sunspots with the Interface Region Imaging Spectrograph

    Full text link
    Observations with the Interface Region Imaging Spectrograph (IRIS) have revealed numerous sub-arcsecond bright dots in the transition region above sunspots. These bright dots are seen in the 1400\AA{} and 1330\AA{} slit-jaw images. They are clearly present in all sunspots we investigated, mostly in the penumbrae, but also occasionally in some umbrae and light bridges. The bright dots in the penumbrae typically appear slightly elongated, with the two dimensions being 300--600 km and 250--450 km, respectively. The long sides of these dots are often nearly parallel to the bright filamentary structures in the penumbrae but sometimes clearly deviate from the radial direction. Their lifetimes are mostly less than one minute, although some dots last for a few minutes or even longer. Their intensities are often a few times stronger than the intensities of the surrounding environment in the slit-jaw images. About half of the bright dots show apparent movement with speeds of ∼\sim10--40~km~s−1^{-1} in the radial direction. Spectra of a few bright dots were obtained and the Si~{\sc{iv}}~1402.77\AA{} line profiles in these dots are significantly broadened. The line intensity can be enhanced by one to two orders of magnitude. Some relatively bright and long-lasting dots are also observed in several passbands of the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory, and they appear to be located at the bases of loop-like structures. Many of these bright dots are likely associated with small-scale energy release events at the transition region footpoints of magnetic loops.Comment: 5 figures, will appear in ApJ

    Ehrenfest time in the weak dynamical localization

    Full text link
    The quantum kicked rotor (QKR) is known to exhibit dynamical localization in the space of its angular momentum. The present paper is devoted to the systematic first--principal (without a regularizer) diagrammatic calculations of the weak--localization corrections for QKR. Our particular emphasis is on the Ehrenfest time regime -- the phenomena characteristic for the classical--to--quantum crossover of classically chaotic systems.Comment: 27 pages, 9 figure

    Any l-state solutions of the Woods-Saxon potential in arbitrary dimensions within the new improved quantization rule

    Full text link
    The approximated energy eigenvalues and the corresponding eigenfunctions of the spherical Woods-Saxon effective potential in DD dimensions are obtained within the new improved quantization rule for all ll-states. The Pekeris approximation is used to deal with the centrifugal term in the effective Woods-Saxon potential. The inter-dimensional degeneracies for various orbital quantum number ll and dimensional space DD are studied. The solutions for the Hulth\'{e}n potential, the three-dimensional (D=3), the % s-wave (l=0l=0) and the cases are briefly discussed.Comment: 15 page
    • …
    corecore