4,952 research outputs found

    An X-ray Study of Two B+B Binaries: AH Cep and CW Cep

    Get PDF
    AH Cep and CW Cep are both early B-type binaries with short orbital periods of 1.8~d and 2.7~d, respectively. All four components are B0.5V types. The binaries are also double-lined spectroscopic and eclipsing. Consequently, solutions for orbital and stellar parameters make the pair of binaries ideal targets for a study of the colliding winds between two B~stars. {\em Chandra} ACIS-I observations were obtained to determine X-ray luminosities. AH~Cep was detected with an unabsorbed X-ray luminosity at a 90\% confidence interval of (9−33)×1030(9-33)\times 10^{30} erg s−1^{-1}, or (0.5−1.7)×10−7LBol(0.5-1.7)\times 10^{-7} L_{\rm Bol}, relative to the combined Bolometric luminosities of the two components. While formally consistent with expectations for embedded wind shocks, or binary wind collision, the near-twin system of CW~Cep was a surprising non-detection. For CW~Cep, an upper limit was determined with LX/LBol<10−8L_X/L_{\rm Bol} < 10^{-8}, again for the combined components. One difference between these two systems is that AH~Cep is part of a multiple system. The X-rays from AH~Cep may not arise from standard wind shocks nor wind collision, but perhaps instead from magnetism in any one of the four components of the system. The possibility could be tested by searching for cyclic X-ray variability in AH~Cep on the short orbital period of the inner B~stars.Comment: Astrophysical Journal, accepte

    Magnetic properties of iron pnictides from spin-spiral calculations

    Full text link
    The wave-vector (q) and doping dependences of the magnetic energy, iron moment, and effective exchange interactions in LaFeAsO, BaFe2As2, and SrFe2As2\ are studied by self-consistent LSDA calculations for co-planar spin spirals. For the undoped compounds, the calculated total energy, E(q), reaches its minimum at q corresponding to stripe anti-ferromagnetic order. In LaFeAsO, this minimum becomes flat already at low levels of electron-doping and shifts to an incommensurate q at delta=0.2, where delta is the number of additional electrons (delta>0) or holes (delta<0) per Fe. In BaFe2As2 and SrFe2As2, stripe order remains stable for hole doping down to delta=-0.3. Under electron doping, on the other hand, the E(q) minimum shifts to incommensurate q already at delta=0.1.Comment: 4 pages, 2 figures, International Conference on Magnetism, Karlsruhe, July 26 - 31, 200

    Nonlinear acousto-electric transport in a two-dimensional electron system

    Full text link
    We study both theoretically and experimentally the nonlinear interaction between an intense surface acoustic wave and a two-dimensional electron plasma in semiconductor-piezocrystal hybrid structures. The experiments on hybrid systems exhibit strongly nonlinear acousto-electric effects. The plasma turns into moving electron stripes, the acousto-electric current reaches its maximum, and the sound absorption strongly decreases. To describe the nonlinear phenomena, we develop a coupled-amplitude method for a two-dimensional system in the strongly nonlinear regime of interaction. At low electron densities the absorption coefficient decreases with increasing sound intensity, whereas at high electron density the absorption coefficient is not a monotonous function of the sound intensity. High-harmonic generation coefficients as a function of the sound intensity have a nontrivial behavior. Theory and experiment are found to be in a good agreement.Comment: 27 pages, 6 figure

    Nano-wires with surface disorder: Giant localization lengths and dynamical tunneling in the presence of directed chaos

    Full text link
    We investigate electron quantum transport through nano-wires with one-sided surface roughness in the presence of a perpendicular magnetic field. Exponentially diverging localization lengths are found in the quantum-to-classical crossover regime, controlled by tunneling between regular and chaotic regions of the underlying mixed classical phase space. We show that each regular mode possesses a well-defined mode-specific localization length. We present analytic estimates of these mode localization lengths which agree well with the numerical data. The coupling between regular and chaotic regions can be determined by varying the length of the wire leading to intricate structures in the transmission probabilities. We explain these structures quantitatively by dynamical tunneling in the presence of directed chaos.Comment: 15 pages, 12 figure

    Antiferromagnetism of SrFe2As2 studied by Single-Crystal 75As-NMR

    Full text link
    We report results of 75As nuclear magnetic resonance (NMR) experiments on a self-flux grown high-quality single crystal of SrFe2As2. The NMR spectra clearly show sharp first-order antiferromagnetic (AF) and structural transitions occurring simultaneously. The behavior in the vicinity of the transition is compared with our previous study on BaFe2As2. No significant difference was observed in the temperature dependence of the static quantities such as the AF splitting and electric quadrupole splitting. However, the results of the NMR relaxation rate revealed difference in the dynamical spin fluctuations. The stripe-type AF fluctuations in the paramagnetic state appear to be more anisotropic in BaFe2As2 than in SrFe2As2.Comment: 4 pages, 5 figures; discussion revised; accepted for publication in J. Phys. Soc. Jp

    Possible superconductivity above 25 K in single crystalline Co-doped BaFe2_{2}As2_{2}

    Full text link
    We present superconducting properties of single crystalline Ba(Fe0.9_{0.9}Co0.1_{0.1})2_{2}As2_{2} by measuring magnetization, resistivity, upper critical field, Hall coefficient, and magneto-optical images. The magnetization measurements reveal fish-tail hysteresis loop at high temperatures and relatively high critical current density above Jc=105J_{c}=10^{5} A/cm2^{2} at low temperatures. Upper critical field determined by resistive transition is anisotropic with anisotropic parameter ∼\sim 3.5. Hall effect measurements indicate that Ba(Fe0.9_{0.9}Co0.1_{0.1})2_{2}As2_{2} is a multiband system and the mobility of electron is dominant. The magneto-optical imaging reveals prominent Bean-like penetration of vortices although there is a slight inhomogeneity in a sample. Moreover, we find a distinct superconductivity above 25 K, which leads us to speculate that higher transition temperature can be realized by fine tuning Co-doping level.Comment: 4 pages, 5 figure

    Spin density wave anomaly at 140 K in the ternary iron arsenide BaFe2As2

    Full text link
    The ternary iron arsenide BaFe2As2 with the tetragonal ThCr2Si2-type structure exhibits a spin density wave (SDW) anomaly at 140 K, very similar to LaFeAsO, the parent compound of the iron arsenide superconductors. BaFe2As2 is a poor Pauli-paramagnetic metal and undergoes a structural and magnetic phase transition at 140 K, accompanied by strong anomalies in the specific heat, electrical resistance and magnetic susceptibility. In the course of this transition, the space group symmetry changes from tetragonal (I4/mmm) to orthorhombic (Fmmm). 57Fe Moessbauer spectroscopy experiments show a single signal at room temperature and full hyperfine field splitting below the phase transition temperature (5.2 T at 77 K). Our results suggest that BaFe2As2 can serve as a new parent compound for oxygen-free iron arsenide superconductors.Comment: 4 pages, 6 figures, submitted to PR

    Intrinsic Properties of AFe2As2 (A = Ba, Sr) Single Crystal under Highly Hydrostatic Pressure Conditions

    Full text link
    We measured the electrical resistivity and ac magnetic susceptibility of BaFe2As2 and SrFe2As2 single crystals under pressure using a cubic anvil apparatus. For BaFe2As2, the antiferromagnetic (AF) and structural transitions are suppressed with increasing pressure. Unexpectedly, these transitions persist up to 8 GPa, and no signature of a superconducting transition was observed in the pressure range investigated here. On the other hand, the AF and structural transitions of SrFe2As2 collapse at around the critical pressure Pc ~ 5 GPa, resulting in the appearance of bulk superconductivity. The superconducting volume fraction abruptly increases above Pc, and shows a dome centered at approximately 6 GPa. Our results suggest that the bulk superconducting phase competes with the AF/orthorhombic phase and only appears in the narrow pressure region of the tetragonal phase.Comment: 4 pages, 4 figures; accepted for publication in J. Phys. Soc. Jp

    Pressure-induced superconductivity in Iron pnictide compound SrFe2As2

    Full text link
    Electrical resistivity under high pressure have been measured on nominally pure SrFe2As2 up to 14 GPa. The resistivity drop appeared with increasing pressure, and we clearly observed zero resistivity. The maximum of superconducting transition temperature (Tc) is 38 K. The value is corresponding to the one of optimally doping AFe2As2 (A=Sr, Ba) system with K+ ions at the A2+ site.Comment: 10 pages, 2 figure
    • …
    corecore