94,883 research outputs found

    Magnetic reconnection from a multiscale instability cascade

    Get PDF
    Magnetic reconnection, the process whereby magnetic field lines break and then reconnect to form a different topology, underlies critical dynamics of magnetically confined plasmas in both nature and the laboratory. Magnetic reconnection involves localized diffusion of the magnetic field across plasma, yet observed reconnection rates are typically much higher than can be accounted for using classical electrical resistivity. It is generally proposed that the field diffusion underlying fast reconnection results instead from some combination of non-magnetohydrodynamic processes that become important on the ‘microscopic’ scale of the ion Larmor radius or the ion skin depth. A recent laboratory experiment demonstrated a transition from slow to fast magnetic reconnection when a current channel narrowed to a microscopic scale, but did not address how a macroscopic magnetohydrodynamic system accesses the microscale. Recent theoretical models and numerical simulations suggest that a macroscopic, two-dimensional magnetohydrodynamic current sheet might do this through a sequence of repetitive tearing and thinning into two-dimensional magnetized plasma structures having successively finer scales. Here we report observations demonstrating a cascade of instabilities from a distinct, macroscopic-scale magnetohydrodynamic instability to a distinct, microscopic-scale (ion skin depth) instability associated with fast magnetic reconnection. These observations resolve the full three-dimensional dynamics and give insight into the frequently impulsive nature of reconnection in space and laboratory plasmas

    The potential use of exhausted open pit mine voids as sinks for atmospheric CO2: insights from natural reedbeds and mine water treatment wetlands

    Get PDF
    Abandoned surface mine voids are often left to flood, forming pit lakes. Drawing simple but important lessons from experiences with compost-based passive remediation systems for acidic mine waters, an alternative end-use for open pit mine voids is proposed: gradual infilling with organic material, which can serve as a long-term sink for atmospheric CO2, whilst ameliorating or eventually eliminating sustained evaporative water loss and acidic water pollution. Key to the success of this approach is the suppression of methane release from organic sediments flooded with sulfate-rich mine waters: the presence of modest amounts of sulfate (which is typically abundant in mine waters) inhibits the activity of methanogenic bacteria. This explains why gas release studies of mine water treatment wetlands never report methane emissions; CO2 is the only greenhouse gas emitted, and this is clearly not at levels sufficient to undo the benefits of wetlands as net CO2 sinks. While the compete infilling of open pits with organic sediments might take a very long time, only minimal maintenance would be needed, and if carbon trading markets finally mature, a steady income stream could be obtained to cover the costs, thus extending the economic life of the mine site far beyond cessation of mining

    Redefining managerial effectiveness in a multilevel organization : a structurationist account

    Get PDF
    Many organization theories consist of an interpretation frame and an idea about the ideal equilibrium state. This article explains how the equilibrium concept is used in four organization theories: the theories of Fayol, Mintzberg, Morgan, and Volberda. Equilibrium can be defined as balance, fit or requisite variety. Equilibrium is related to observables dependent on the definition of organization as work organization, formal organization or artifact organization. Equilibrium can be explicitly related to performance in the theory used, enabling cross-sectional research. The discussed theories can be mapped on a state space model in a way that clarifies the equilibrium concept, namely a mu-space (Fayol and Morgan), or a gamma-space (Mintzberg and Volberda). 1 Prof.dr. Henk W.M. Gazendam is professor of Information Systems in the Public Sector at the Faculty of Public Administration at Twente University and associate professor of Information Strategy at the Faculty of Management and Organization at Groningen University (P.O.Box 800, NL-9700-AV Groningen, The Netherlands, tel +31-50-3637078, email [email protected]). 2 Contribution to the Computational and Mathematical Organization Theory Workshop, May 3 and 4, 1996, Washington Hilton & Towers. 3 The author wishes to thank Vincent Homburg for his valuable comments.

    Normalized Web Distance and Word Similarity

    Get PDF
    There is a great deal of work in cognitive psychology, linguistics, and computer science, about using word (or phrase) frequencies in context in text corpora to develop measures for word similarity or word association, going back to at least the 1960s. The goal of this chapter is to introduce the normalizedis a general way to tap the amorphous low-grade knowledge available for free on the Internet, typed in by local users aiming at personal gratification of diverse objectives, and yet globally achieving what is effectively the largest semantic electronic database in the world. Moreover, this database is available for all by using any search engine that can return aggregate page-count estimates for a large range of search-queries. In the paper introducing the NWD it was called `normalized Google distance (NGD),' but since Google doesn't allow computer searches anymore, we opt for the more neutral and descriptive NWD. web distance (NWD) method to determine similarity between words and phrases. ItComment: Latex, 20 pages, 7 figures, to appear in: Handbook of Natural Language Processing, Second Edition, Nitin Indurkhya and Fred J. Damerau Eds., CRC Press, Taylor and Francis Group, Boca Raton, FL, 2010, ISBN 978-142008592

    A Fast Quartet Tree Heuristic for Hierarchical Clustering

    Get PDF
    The Minimum Quartet Tree Cost problem is to construct an optimal weight tree from the 3(n4)3{n \choose 4} weighted quartet topologies on nn objects, where optimality means that the summed weight of the embedded quartet topologies is optimal (so it can be the case that the optimal tree embeds all quartets as nonoptimal topologies). We present a Monte Carlo heuristic, based on randomized hill climbing, for approximating the optimal weight tree, given the quartet topology weights. The method repeatedly transforms a dendrogram, with all objects involved as leaves, achieving a monotonic approximation to the exact single globally optimal tree. The problem and the solution heuristic has been extensively used for general hierarchical clustering of nontree-like (non-phylogeny) data in various domains and across domains with heterogeneous data. We also present a greatly improved heuristic, reducing the running time by a factor of order a thousand to ten thousand. All this is implemented and available, as part of the CompLearn package. We compare performance and running time of the original and improved versions with those of UPGMA, BioNJ, and NJ, as implemented in the SplitsTree package on genomic data for which the latter are optimized. Keywords: Data and knowledge visualization, Pattern matching--Clustering--Algorithms/Similarity measures, Hierarchical clustering, Global optimization, Quartet tree, Randomized hill-climbing,Comment: LaTeX, 40 pages, 11 figures; this paper has substantial overlap with arXiv:cs/0606048 in cs.D

    Absorption and generation of femtosecond laser-pulse excited spin currents in non-collinear magnetic bilayers

    Get PDF
    Spin currents can be generated on an ultrafast timescale by excitation of a ferromagnetic (FM) thin film with a femtosecond laser-pulse. Recently, it has been demonstrated that these ultrafast spin currents can transport angular momentum to neighbouring FM layers, being able to change both the magnitude and orientation of the magnetization in the adjacent layer. In this work, both the generation and absorption of these optically excited spin currents are investigated. This is done using non-collinear magnetic bilayers, i.e. two FM layers separated by a conductive spacer. Spin currents are generated in a Co/Ni multilayer with out-of-plane (OOP) anisotropy, and absorbed by a Co layer with an in-plane (IP) anisotropy. This behaviour is confirmed by careful analysis of the laser-pulse induced magnetization dynamics, whereafter it is demonstrated that the transverse spin current is absorbed very locally near the injection interface of the IP layer (90% within the first approx. 2 nm). Moreover, it will also be shown that this local absorption results in the excitation of THz standing spin waves within the IP layer. The dispersion measured for these high frequency spin waves shows a discrepancy with respect to the theoretical predictions, for which a first explanation involving intermixed interface regions is proposed. Lastly, the spin current generation is investigated using different number of repeats for the Co/Ni multilayer, which proves to be of great relevance for identifying the optical spin current generation mechanism
    • …
    corecore