537 research outputs found

    Design and operation of the wide angular-range chopper spectrometer ARCS at the Spallation Neutron Source

    Get PDF
    The wide angular-range chopper spectrometer ARCS at the Spallation Neutron Source (SNS) is optimized to provide a high neutron flux at the sample position with a large solid angle of detector coverage. The instrument incorporates modern neutron instrumentation, such as an elliptically focused neutron guide, high speed magnetic bearing choppers, and a massive array of ^3He linear position sensitive detectors. Novel features of the spectrometer include the use of a large gate valve between the sample and detector vacuum chambers and the placement of the detectors within the vacuum, both of which provide a window-free final flight path to minimize background scattering while allowing rapid changing of the sample and sample environment equipment. ARCS views the SNS decoupled ambient temperature water moderator, using neutrons with incident energy typically in the range from 15 to 1500 meV. This range, coupled with the large detector coverage, allows a wide variety of studies of excitations in condensed matter, such as lattice dynamics and magnetism, in both powder and single-crystal samples. Comparisons of early results to both analytical and Monte Carlo simulation of the instrument performance demonstrate that the instrument is operating as expected and its neutronic performance is understood. ARCS is currently in the SNS user program and continues to improve its scientific productivity by incorporating new instrumentation to increase the range of science covered and improve its effectiveness in data collection

    Large harmonic softening of the phonon density of states of uranium

    Get PDF
    Phonon density-of-states curves were obtained from inelastic neutron scattering spectra from the three crystalline phases of uranium at temperatures from 50 to 1213 K. The alpha -phase showed an unusually large thermal softening of phonon frequencies. Analysis of the vibrational power spectrum showed that this phonon softening originates with the softening of a harmonic solid, as opposed to vibrations in anharmonic potentials. It follows that thermal excitations of electronic states are more significant thermodynamically than are the classical volume effects. For the alpha-beta and beta-gamma phase transitions, vibrational and electronic entropies were comparable

    Phonon densities of states and vibrational entropies of ordered and disordered Ni3Al

    Get PDF
    We performed inelastic neutron-scattering measurements on powdered Ni3Al. The alloy was prepared in two states of chemical order: (1) with equilibrium L12 order, and (2) with disorder (the material was a fcc solid solution prepared by high-energy ball milling). Procedures to convert the energy loss spectra into approximate phonon density of states (DOS) curves for Ni3Al in the two states of chemical order were guided by Born–von Kármán analyses with force constants obtained from previous single-crystal experiments on L12-ordered Ni3Al and fcc Ni metal. The main difference in the phonon DOS of the ordered and disordered alloys occurs near 39 meV, the energy of a peak arising from optical modes in the ordered alloy. These high-frequency optical modes involve primarily the vibrations of the aluminum-rich sublattice. The disordered alloy, which does not have such a sublattice, shows much less intensity at this energy. This difference in the phonon DOS around 39 meV is the main contributor to the difference in vibrational entropy of disordered and ordered Ni3Al, which we estimate to be Svibdis-Svibord=(+0.2±0.1)kB/atom at high temperatures

    Nonharmonic phonons in MgB_2 at elevated temperatures

    Get PDF
    Inelastic neutron scattering was used to measure phonon spectra in MgB_2 and Mg_(0.75)Al_(0.25)B_2 from 7 to 750 K to investigate anharmonicity and adiabatic electron-phonon coupling. First-principles calculations of phonons with a linear response method were performed at multiple unit cell volumes, and the Helmholtz free energy was minimized to obtain the lattice parameters and phonon dynamics at elevated temperature in the quasiharmonic approximation. Most of the temperature dependence of the phonon density of states could be understood with the quasiharmonic approximation, although there was also significant thermal broadening of the phonon spectra. In comparison to Mg_(0.75)Al_(0.25)B_2, in the energy range of 60 to 80 meV the experimental phonon spectra from MgB_2 showed a nonmonotonic change with temperature around 500 K. This may originate from a change with temperature of the adiabatic electron-phonon coupling

    Positive Vibrational Entropy of Chemical Ordering in FeV

    Get PDF
    Inelastic neutron scattering and nuclear resonant inelastic x-ray scattering were used to measure phonon spectra of FeV as a B2 ordered compound and as a bcc solid solution. The two data sets were combined to give an accurate phonon density of states, and the phonon partial densities of states for V and Fe atoms. Contrary to the behavior of ordering alloys studied to date, the phonons in the B2 ordered phase are softer than in the solid solution. Ordering increases the vibrational entropy by +0.22±0.03k_B/atom, which stabilizes the ordered phase to higher temperatures. First-principles calculations show that the number of electronic states at the Fermi level increases upon ordering, enhancing the screening between ions, and reducing the interatomic force constants. The effect of screening is larger at the V atomic sites than at the Fe atomic sites

    Effects of chemical composition and B2 order on phonons in bcc Fe–Co alloys

    Get PDF
    The phonon density of states (DOS) gives insight into interatomic forces and provides the vibrational entropy, making it a key thermodynamic function for understanding alloy phase transformations. Nuclear resonant inelastic x-ray scattering and inelastic neutron scattering were used to measure the chemical dependence of the DOS of bcc Fe–Co alloys. For the equiatomic alloy, the A2→B2 (chemically disordered→chemically ordered) phase transformation caused measurable changes in the phonon spectrum. The measured change in vibrational entropy upon ordering was −0.02±0.02 k_B/atom, suggesting that vibrational entropy results in a reduction in the order–disorder transition temperature by 60±60 K. The Connolly–Williams cluster inversion method was used to obtain interaction DOS (IDOS) curves that show how point and pair variables altered the phonon DOS of disordered bcc Fe–Co alloys. These IDOS curves accurately captured the change in the phonon DOS and vibrational entropy of the B2 ordering transition

    Magnetic properties of bcc Fe-Pd extended solid solutions

    Get PDF
    Supersaturated Fe-Pd solid solutions were prepared by mechanical alloying. X-ray diffractometry showed that the as-milled alloys were bcc from 0–26 at. % Pd. Saturation magnetization measurements and Mössbauer spectrometry measurements were performed on these powders. Consistent interpretations of both sets of measurements were possible if the magnetic moment at the Pd atom was 0.35μB and constant, and if the magnetic moments at Fe atoms were enhanced by neighboring Pd atoms in a way similar to the effects of Ni
    • …
    corecore