8 research outputs found

    Electromagnetic and Gravitational Radiation of Graviatoms

    Full text link
    Graviatom existence conditions have been found. The graviatoms (quantum systems around mini-black-holes) satisfying these conditions contain the following charged particles: the electron, muon, tau lepton, wino, pion and kaon. Electric dipole and quadrupole and gravitational radiations are calculated for the graviatoms and compared with Hawking's mini-hole radiation.Comment: 7 pages, 1 figure, 3 tables; accepted in "Astronomical and Astrophysical Transactions

    Wave functions for arbitrary operator ordering in the de Sitter minisuperspace approximation

    Get PDF
    We derive exact series solutions for the Wheeler-DeWitt equation corresponding to a spatially closed Friedmann-Robertson-Walker universe with cosmological constant for arbitrary operator ordering of the scale factor of the universe. The resulting wave functions are those relevant to the approximation which has been widely used in two-dimensional minisuperspace models with an inflationary scalar field for the purpose of predicting the period of inflation which results from competing boundary condition proposals for the wave function of the universe. The problem that Vilenkin's tunneling wave function is not normalizable for general operator orderings, is shown to persist for other values of the spatial curvature, and when additional matter degrees of freedom such as radiation are included.Comment: 12 pages, revTeX-3.

    Dynamical Vacuum in Quantum Cosmology

    Get PDF
    By regarding the vacuum as a perfect fluid with equation of state p=-rho, de Sitter's cosmological model is quantized. Our treatment differs from previous ones in that it endows the vacuum with dynamical degrees of freedom. Instead of being postulated from the start, the cosmological constant arises from the degrees of freedom of the vacuum regarded as a dynamical entity, and a time variable can be naturally introduced. Taking the scale factor as the sole degree of freedom of the gravitational field, stationary and wave-packet solutions to the Wheeler-DeWitt equation are found. It turns out that states of the Universe with a definite value of the cosmological constant do not exist. For the wave packets investigated, quantum effects are noticeable only for small values of the scale factor, a classical regime being attained at asymptotically large times.Comment: Latex, 19 pages, to appear in Gen. Rel. Gra
    corecore