9 research outputs found

    Fetotoxicity caused by the interaction between zinc and arsenic in mice

    No full text
    Arsenic is an environmental pollutant that induces congenital malformations in experimental models and can contribute to human birth defects. The environmental exposure to arsenic is relatively small when compared with the doses required to cause teratogenicity in mice and other laboratory animals. In order to study the action of zinc in the arsenic-induced teratogenicity, in the present work mice were either pretreated with zinc and later with arsenic or were treated simultaneously with zinc and arsenic in vivo and in vitro. Following administration of arsenate on gestation day 8, pregnant females were killed on the 17th day of gestation; maternal and fetal data were collected by laparotomy and used to calculate reproductive parameters. Fetuses were analyzed for the presence of external malformation and, after the appropriate processing, visceral and skeletal analyses were accomplished. Conceptuses were exposed in whole embryo culture to arsenicals on gestation day 8 (3-6 somite stage). After a 26 h culture period, morphological development was assessed. Neither pretreatment with zinc nor simultaneous administration of zinc prevented arsenic teratogenicity in these experimental models. (C) 2002 Wiley-Liss, Inc

    Biotransformation of magnetic nanoparticles as a function of coating in a rat model

    No full text
    Long-term in vivo studies in murine models have shown that DMSA-coated nanoparticles accumulate in spleen, liver and lung tissues during extended periods of time (at least up to 3 months) without any significant signs of toxicity detected. During that time, nanoparticles undergo a process of biotransformation either by reducing the size or the particle aggregation or both. Using a rat model, we have evaluated the transformations of magnetic nanoparticles injected at low doses. Particles with two different coatings, dimercaptosuccinic acid (NP-DMSA) and polyethylene glycol (NP-PEG-(NH2)2) have been administered to animals, to evaluate the role of coating in the degradation of the particles. We have found that low doses of magnetic nanoparticles are quickly metabolized by the animals. In fact, using a nanoparticle dose four times lower than in previous experiments, NP-DMSA were not observed 24 h after the administration either in the liver or in the lungs. Interestingly, an increased amount of ferritin, the iron storage protein, was observed in liver tissues from rats that were treated with the low dose of NP-DMSA in comparison with the control ones, suggesting a rapid metabolization of the particles into ferritin iron. On the other side we have found that, NP-PEG-(NH2)2 are still detectable in several organs 24 h after their administration at low doses. Probably, due to the longer circulation times of the NP-PEG-(NH2)2, there is a delay in the arrival of the particles to the tissue and this is the reason why we are able to see the particles 24 h post-administration. PEG coating could also be protecting the nanoparticles from rapid degradation of the reticuloendothelial system. Knowledge on the biodistribution, circulation time and degradation processes is required to gain a better understanding of the safety evaluation of this kind of nanomaterial for biomedical applications.Amalia Ruiz holds a predoctoral fellowship from a CSIC-CITMA collaborative project (B01CU2009; ICMM, 2011–2014) and a short-term fellowship from CNPq (DTI-2; 383934/2013-3). Lucía Gutiérrez is the beneficiary of a post-doctoral grant from the AXA Research Fund. This work was partially supported by the European Commission (MULTIFUN, no. 262943)

    Comet and cytogenetic tests as tools for evaluating genomic instability in seeds of Oryza sativa L. and Phaseolus vulgaris L. from gene banks

    No full text
    Abstract This study aimed to assess the feasibility of comet and cytogenetic tests as tools for evaluating genomic instability in seeds of Oryza sativa L. (rice) and Phaseolus vulgaris (beans) L. from gene banks. Rice and beans were exposed to methyl methanesulfonate (MMS) as a reference DNA damaging agent. Seeds of two accessions of rice and beans were obtained from Embrapa Rice and Beans - Brazil. Seed groups were imbibed in three concentrations of MMS for three periods of time to carry out cytogenetic tests, and for one period for the comet test. At concentrations of 10 and 15 mg/L, MMS induced cytotoxic and/or mutagenic effects in the meristematic cells of roots from all the accessions of both species. In the comet test, MMS induced genotoxic effects at all the concentrations in the evaluated accessions of rice and beans, except in one accession of beans at the lowest concentration (5 mg/L). Both species showed sensitivity to MMS. The comet test can be proposed for the measurement of genomic instability in accessions of rice and beans in gene banks, as being more sensitive than the cytogenetic tests used
    corecore