25,673 research outputs found

    Interaction of a Modulated Electron Beam with a Plasma

    Get PDF
    The results of a theoretical and experimental investigation of the high-frequency interaction of an electron beam with a plasma are reported. An electron beam, modulated at a microwave frequency, passes through a uniform region of a mercury arc discharge after which it is demodulated. Exponentially growing wave amplification along the electron beam was experimentally observed for the first time at a microwave frequency equal to the plasma frequency. Approximate theories of the effects of 1) plasma-electron collision frequencies, 2) plasma-electron thermal velocities and 3) finite beam diameter, are given. In a second experiment the interaction between a modulated electron beam and a slow electrostatic wave on a plasma column has been studied. A strong interaction occurs when the velocity of the electron beam is approximately equal to the velocity of the wave and the interaction is essentially the same as that which occurs in traveling-wave amplifiers, except that here the plasma colum replaces the usual helical slow-wave circuit. The theory predicting rates of growth is presented and compared with the experimental results

    A ROTTERDAM APPLICATION TO INTERNATIONAL TRADE IN FRESH APPLES: A DIFFERENTIAL APPROACH

    Get PDF
    A Rotterdam import allocation model is used to fit import data for fresh apples in four importing markets important to U.S. apple exporters. Nested tests rejected homotheticity but could not reject homogeneity, symmetry, or separability among import suppliers. A Monte Carlo test rejected first-order autocorrelation in each market. Expenditure and price elasticities are calculated and reported.International Relations/Trade,

    Detecting D-Wave Pairing and Collective Modes in Fermionic Condensates with Bragg Scattering

    Full text link
    We show how the appearance of d-wave pairing in fermionic condensates manifests itself in inelastic light scattering. Specifically, we calculate the Bragg scattering intensity from the dynamic structure factor and the spin susceptibility, which can be inferred from spin flip Raman transitions. This information provides a precise tool with which we can identify nontrivial correlations in the state of the system beyond the information contained in the density profile imaging alone. Due to the lack of Coulomb effects in neutral superfluids, this is also an opportunity to observe the Anderson-Bogoliubov collective mode

    Religious leaders\u27 perceptions of advance care planning: a secondary analysis of interviews with Buddhist, Christian, Hindu, Islamic, Jewish, Sikh and Bahai leaders

    Get PDF
    Background: International guidance for advance care planning (ACP) supports the integration of spiritual and religious aspects of care within the planning process. Religious leaders’ perspectives could improve how ACP programs respect patients’ faith backgrounds. This study aimed to examine: (i) how religious leaders understand and consider ACP and its implications, including (ii) how religion affects followers’ approaches to end-of-life care and ACP, and (iii) their implications for healthcare. Methods: Interview transcripts from a primary qualitative study conducted with religious leaders to inform an ACP website, ACPTalk, were used as data in this study. ACPTalk aims to assist health professionals conduct sensitive conversations with people from different religious backgrounds. A qualitative secondary analysis conducted on the interview transcripts focussed on religious leaders’ statements related to this study’s aims. Interview transcripts were thematically analysed using an inductive, comparative, and cyclical procedure informed by grounded theory. Results: Thirty-five religious leaders (26 male; mean 58.6-years-old), from eight Christian and six non-Christian (Jewish, Buddhist, Islamic, Hindu, Sikh, Bahá’í) backgrounds were included. Three themes emerged which focussed on: religious leaders’ ACP understanding and experiences; explanations for religious followers’ approaches towards end-of-life care; and health professionals’ need to enquire about how religion matters. Most leaders had some understanding of ACP and, once fully comprehended, most held ACP in positive regard. Religious followers’ preferences for end-of-life care reflected family and geographical origins, cultural traditions, personal attitudes, and religiosity and faith interpretations. Implications for healthcare included the importance of avoiding generalisations and openness to individualised and/ or standardised religious expressions of one’s religion. Conclusions: Knowledge of religious beliefs and values around death and dying could be useful in preparing health professionals for ACP with patients from different religions but equally important is avoidance of assumptions. Community-based initiatives, programs and faith settin

    Discussion quality diffuses in the digital public square

    Full text link
    Studies of online social influence have demonstrated that friends have important effects on many types of behavior in a wide variety of settings. However, we know much less about how influence works among relative strangers in digital public squares, despite important conversations happening in such spaces. We present the results of a study on large public Facebook pages where we randomly used two different methods--most recent and social feedback--to order comments on posts. We find that the social feedback condition results in higher quality viewed comments and response comments. After measuring the average quality of comments written by users before the study, we find that social feedback has a positive effect on response quality for both low and high quality commenters. We draw on a theoretical framework of social norms to explain this empirical result. In order to examine the influence mechanism further, we measure the similarity between comments viewed and written during the study, finding that similarity increases for the highest quality contributors under the social feedback condition. This suggests that, in addition to norms, some individuals may respond with increased relevance to high-quality comments.Comment: 10 pages, 6 figures, 2 table

    Robust Quantum Error Correction via Convex Optimization

    Full text link
    We present a semidefinite program optimization approach to quantum error correction that yields codes and recovery procedures that are robust against significant variations in the noise channel. Our approach allows us to optimize the encoding, recovery, or both, and is amenable to approximations that significantly improve computational cost while retaining fidelity. We illustrate our theory numerically for optimized 5-qubit codes, using the standard [5,1,3] code as a benchmark. Our optimized encoding and recovery yields fidelities that are uniformly higher by 1-2 orders of magnitude against random unitary weight-2 errors compared to the [5,1,3] code with standard recovery. We observe similar improvement for a 4-qubit decoherence-free subspace code.Comment: 4 pages, including 3 figures. v2: new example

    Supersensitive measurement of angular displacements using entangled photons

    Full text link
    We show that the use of entangled photons having non-zero orbital angular momentum (OAM) increases the resolution and sensitivity of angular-displacement measurements performed using an interferometer. By employing a 4Ă—\times4 matrix formulation to study the propagation of entangled OAM modes, we analyze measurement schemes for two and four entangled photons and obtain explicit expressions for the resolution and sensitivity in these schemes. We find that the resolution of angular-displacement measurements scales as NlNl while the angular sensitivity increases as 1/(2Nl)1/(2Nl), where NN is the number of entangled photons and ll the magnitude of the orbital-angular-momentum mode index. These results are an improvement over what could be obtained with NN non-entangled photons carrying an orbital angular momentum of lâ„Źl\hbar per photonComment: 6 pages, 3 figure

    Zitterbewegung of optical pulses in nonlinear frequency conversion

    Full text link
    Pulse walk-off in the process of sum frequency generation in a nonlinear χ(2)\chi^{(2)} crystal is shown to be responsible for pulse jittering which is reminiscent to the Zitterbewegung (trembling motion) of a relativistic freely moving Dirac particle. An analytical expression for the pulse center of mass trajectory is derived in the no-pump-depletion limit, and numerical examples of Zitterbewegung are presented for sum frequency generation in periodically-poled lithium niobate. The proposed quantum-optical analogy indicates that frequency conversion in nonlinear optics could provide an experimentally accessible simulator of the Dirac equation.Comment: to be published in Journal of Physics B: Atomic, Molecular & Optical Physic
    • …
    corecore