1,297 research outputs found

    Nucleosynthesis in 2D Core-Collapse Supernovae of 11.2 and 17.0 M⊙_{\odot} Progenitors: Implications for Mo and Ru Production

    Full text link
    Core-collapse supernovae are the first polluters of heavy elements in the galactic history. As such, it is important to study the nuclear compositions of their ejecta, and understand their dependence on the progenitor structure (e.g., mass, compactness, metallicity). Here, we present a detailed nucleosynthesis study based on two long-term, two-dimensional core-collapse supernova simulations of a 11.2 M⊙_{\odot} and a 17.0 M⊙_{\odot} star. We find that in both models nuclei well beyond the iron group (up to Z≈44Z \approx 44) can be produced, and discuss in detail also the nucleosynthesis of the p-nuclei 92,94^{92,94}Mo and 96,98^{96,98}Ru. While we observe the production of 92^{92}Mo and 94^{94}Mo in slightly neutron-rich conditions in both simulations, 96,98^{96,98}Ru can only be produced efficiently via the Îœ\nup-process. Furthermore, the production of Ru in the Îœ\nup-process heavily depends on the presence of very proton-rich material in the ejecta. This disentanglement of production mechanisms has interesting consequences when comparing to the abundance ratios between these isotopes in the solar system and in presolar grains.Comment: 48 pages, 19 figures, accepted for publication in: J. Phys. G: Nucl. Part. Phy

    Gravitational waves from supernova matter

    Full text link
    We have performed a set of 11 three-dimensional magnetohydrodynamical core collapse supernova simulations in order to investigate the dependencies of the gravitational wave signal on the progenitor's initial conditions. We study the effects of the initial central angular velocity and different variants of neutrino transport. Our models are started up from a 15 solar mass progenitor and incorporate an effective general relativistic gravitational potential and a finite temperature nuclear equation of state. Furthermore, the electron flavour neutrino transport is tracked by efficient algorithms for the radiative transfer of massless fermions. We find that non- and slowly rotating models show gravitational wave emission due to prompt- and lepton driven convection that reveals details about the hydrodynamical state of the fluid inside the protoneutron stars. Furthermore we show that protoneutron stars can become dynamically unstable to rotational instabilities at T/|W| values as low as ~2 % at core bounce. We point out that the inclusion of deleptonization during the postbounce phase is very important for the quantitative GW prediction, as it enhances the absolute values of the gravitational wave trains up to a factor of ten with respect to a lepton-conserving treatment.Comment: 10 pages, 6 figures, accepted, to be published in a Classical and Quantum Gravity special issue for MICRA200

    R-Process Nucleosynthesis in MHD Jet Explosions of Core-Collapse Supernovae

    Full text link
    We investigate rr-process nucleosynthesis during the magnetohydrodynamical (MHD) explosion of supernova in a massive star of 13 M⊙M_{\odot}. Contrary to the case of the spherical explosion, jet-like explosion due to the combined effects of the rotation and magnetic field lowers the electron fraction significantly inside the layers above the iron core. We find that the ejected material of low electron fraction responsible for the rr-process comes out from the silicon rich layer of the presupernova model. This leads to the production up to the third peak in the solar rr-process elements. We examine whether the fission affects the rr-process paths by using the full nuclear reaction network with both the spontaneous and ÎČ\beta-delayed fission included. Moreover, we pay particular attention how the mass formula affects the rr-process peaks with use of two mass formulae. It is found that both formulae can reproduce the global abundance pattern up to the third peak though detailed distributions are rather different. We point out that there are variations in the rr-process nucleosynthesis if the MHD effects play an important role in the supernova explosion.Comment: 19 pages with 7 figures, submitted to Ap

    Neutrino oscillations in magnetically driven supernova explosions

    Full text link
    We investigate neutrino oscillations from core-collapse supernovae that produce magnetohydrodynamic (MHD) explosions. By calculating numerically the flavor conversion of neutrinos in the highly non-spherical envelope, we study how the explosion anisotropy has impacts on the emergent neutrino spectra through the Mikheyev-Smirnov-Wolfenstein effect. In the case of the inverted mass hierarchy with a relatively large theta_(13), we show that survival probabilities of electron type neutrinos and antineutrinos seen from the rotational axis of the MHD supernovae (i.e., polar direction), can be significantly different from those along the equatorial direction. The event numbers of electron type antineutrinos observed from the polar direction are predicted to show steepest decrease, reflecting the passage of the magneto-driven shock to the so-called high-resonance regions. Furthermore we point out that such a shock effect, depending on the original neutrino spectra, appears also for the low-resonance regions, which leads to a noticeable decrease in the electron type neutrino signals. This reflects a unique nature of the magnetic explosion featuring a very early shock-arrival to the resonance regions, which is in sharp contrast to the neutrino-driven delayed supernova models. Our results suggest that the two features in the electron type antineutrinos and neutrinos signals, if visible to the Super-Kamiokande for a Galactic supernova, could mark an observational signature of the magnetically driven explosions, presumably linked to the formation of magnetars and/or long-duration gamma-ray bursts.Comment: 25 pages, 21 figures, JCAP in pres

    Approaching the dynamics of hot nucleons in supernovae

    Full text link
    All recent numerical simulations agree that stars in the main sequence mass range of 9-40 solar masses do not produce a prompt hydrodynamic ejection of the outer layers after core collapse and bounce. Rather they suggest that stellar core collapse and supernova explosion are dynamically distinct astrophysical events, separated by an unspectacular accretion phase of at least ~40 ms duration. As long as the neutrinospheres remain convectively stable, the explosion dynamics is determined by the neutrons, protons, electrons and neutrinos in the layer of impact-heated matter piling up on the protoneutron star. The crucial role of neutrino transport in this regime has been emphasized in many previous investigations. Here, we search for efficient means to address the role of magnetic fields and fluid instabilities in stellar core collapse and the postbounce phase.Comment: 4 pages, contribution to Nuclei in the Cosmos VIII, Jul. 19-23, submitted to Nucl. Phys.

    Biermann Mechanism in Primordial Supernova Remnant and Seed Magnetic Fields

    Full text link
    We study generation of magnetic fields by the Biermann mechanism in the pair-instability supernovae explosions of first stars. The Biermann mechanism produces magnetic fields in the shocked region between the bubble and interstellar medium (ISM), even if magnetic fields are absent initially. We perform a series of two-dimensional magnetohydrodynamic simulations with the Biermann term and estimate the amplitude and total energy of the produced magnetic fields. We find that magnetic fields with amplitude 10−14−10−1710^{-14}-10^{-17} G are generated inside the bubble, though the amount of magnetic fields generated depend on specific values of initial conditions. This corresponds to magnetic fields of 1028−103110^{28}-10^{31} erg per each supernova remnant, which is strong enough to be the seed magnetic field for galactic and/or interstellar dynamo.Comment: 12 pages, 3 figure

    Gravitational Waves from Core Collapse Supernovae

    Full text link
    We present the gravitational wave signatures for a suite of axisymmetric core collapse supernova models with progenitors masses between 12 and 25 solar masses. These models are distinguished by the fact they explode and contain essential physics (in particular, multi-frequency neutrino transport and general relativity) needed for a more realistic description. Thus, we are able to compute complete waveforms (i.e., through explosion) based on non-parameterized, first-principles models. This is essential if the waveform amplitudes and time scales are to be computed more precisely. Fourier decomposition shows that the gravitational wave signals we predict should be observable by AdvLIGO across the range of progenitors considered here. The fundamental limitation of these models is in their imposition of axisymmetry. Further progress will require counterpart three-dimensional models.Comment: 10 pages, 5 figure
    • 

    corecore