2,326 research outputs found

    Decoherence suppression by uncollapsing

    Full text link
    We show that the qubit decoherence due to zero-temperature energy relaxation can be almost completely suppressed by using the quantum uncollapsing procedure. To protect a qubit state, a partial quantum measurement moves it towards the ground state, where it is kept during the storage period, while the second partial measurement restores the initial state. This procedure preferentially selects the cases without energy decay events. Stronger decoherence suppression requires smaller selection probability; a desired point in this trade-off can be chosen by varying the measurement strength. The experiment can be realized in a straightforward way using the superconducting phase qubit.Comment: 4 page

    Quantum theory of a bandpass Purcell filter for qubit readout

    Full text link
    The readout fidelity of superconducting transmon and Xmon qubits is partially limited by the qubit energy relaxation through the resonator into the transmission line, which is also known as the Purcell effect. One way to suppress this energy relaxation is to employ a filter which impedes microwave propagation at the qubit frequency. We present semiclassical and quantum analyses for the bandpass Purcell filter realized by E.\ Jeffrey \textit{et al}.\ [Phys.\ Rev.\ Lett.\ 112, 190504 (2014)]. For typical experimental parameters, the bandpass filter suppresses the qubit relaxation rate by up to two orders of magnitude while maintaining the same measurement rate. We also show that in the presence of a microwave drive the qubit relaxation rate further decreases with increasing drive strength.Comment: 15 pages, 4 figures; published versio

    Purcell effect with microwave drive: Suppression of qubit relaxation rate

    Full text link
    We analyze the Purcell relaxation rate of a superconducting qubit coupled to a resonator, which is coupled to a transmission line and pumped by an external microwave drive. Considering the typical regime of the qubit measurement, we focus on the case when the qubit frequency is significantly detuned from the resonator frequency. Surprisingly, the Purcell rate decreases when the strength of the microwave drive is increased. This suppression becomes significant in the nonlinear regime. In the presence of the microwave drive, the loss of photons to the transmission line also causes excitation of the qubit; however, the excitation rate is typically much smaller than the relaxation rate. Our analysis also applies to a more general case of a two-level quantum system coupled to a cavity.Comment: Published versio

    Nonideal quantum detectors in Bayesian formalism

    Full text link
    The Bayesian formalism for a continuous measurement of solid-state qubits is derived for a model which takes into account several factors of the detector nonideality. In particular, we consider additional classical output and backaction noises (with finite correlation), together with quantum-limited output and backaction noises, and take into account possible asymmetry of the detector coupling. The formalism is first derived for a single qubit and then generalized to the measurement of entangled qubits.Comment: 10 page

    Quantum feedback control of a solid-state qubit

    Full text link
    We have studied theoretically the basic operation of a quantum feedback loop designed to maintain a desired phase of quantum coherent oscillations in a single solid-state qubit. The degree of oscillations synchronization with external harmonic signal is calculated as a function of feedback strength, taking into account available bandwidth and coupling to environment. The feedback can efficiently suppress the dephasing of oscillations if the qubit coupling to the detector is stronger than coupling to environment.Comment: Extended version of cond-mat/0107280 (5 pages, 5 figures); to be published in PRB (RC

    Simple quantum feedback of a solid-state qubit

    Full text link
    We propose an experiment on quantum feedback control of a solid-state qubit, which is almost within the reach of the present-day technology. Similar to the earlier proposal, the feedback loop is used to maintain the coherent (Rabi) oscillations in a qubit for an arbitrary long time; however, this is done in a significantly simpler way, which requires much smaller bandwidth of the control circuitry. The main idea is to use the quadrature components of the noisy detector current to monitor approximately the phase of qubit oscillations. The price for simplicity is a less-than-ideal operation: the fidelity is limited by about 95%. The feedback loop operation can be experimentally verified by appearance of a positive in-phase component of the detector current relative to an external oscillating signal used for synchronization.Comment: 5 page

    Resonator/zero-Qubit architecture for superconducting qubits

    Full text link
    We analyze the performance of the Resonator/zero-Qubit (RezQu) architecture in which the qubits are complemented with memory resonators and coupled via a resonator bus. Separating the stored information from the rest of the processing circuit by at least two coupling steps and the zero qubit state results in a significant increase of the ON/OFF ratio and the reduction of the idling error. Assuming no decoherence, we calculate such idling error, as well as the errors for the MOVE operation and tunneling measurement, and show that the RezQu architecture can provide high fidelity performance required for medium-scale quantum information processing.Comment: 11 pages, 5 figure
    • …
    corecore