420 research outputs found

    EVM and Achievable Data Rate Analysis of Clipped OFDM Signals in Visible Light Communication

    Get PDF
    Orthogonal frequency division multiplexing (OFDM) has been considered for visible light communication (VLC) thanks to its ability to boost data rates as well as its robustness against frequency-selective fading channels. A major disadvantage of OFDM is the large dynamic range of its time-domain waveforms, making OFDM vulnerable to nonlinearity of light emitting diodes (LEDs). DC biased optical OFDM (DCO-OFDM) and asymmetrically clipped optical OFDM (ACO-OFDM) are two popular OFDM techniques developed for the VLC. In this paper, we will analyze the performance of the DCO-OFDM and ACO-OFDM signals in terms of error vector magnitude (EVM), signal-to-distortion ratio (SDR), and achievable data rates under both average optical power and dynamic optical power constraints. EVM is a commonly used metric to characterize distortions. We will describe an approach to numerically calculate the EVM for DCO-OFDM and ACO-OFDM. We will derive the optimum biasing ratio in the sense of minimizing EVM for DCO-OFDM. Additionally, we will formulate the EVM minimization problem as a convex linear optimization problem and obtain an EVM lower bound against which to compare the DCO-OFDM and ACO-OFDM techniques. We will prove that the ACO-OFDM can achieve the lower bound. Average optical power and dynamic optical power are two main constraints in VLC. We will derive the achievable data rates under these two constraints for both additive white Gaussian noise (AWGN) channel and frequency-selective channel. We will compare the performance of DCO-OFDM and ACO-OFDM under different power constraint scenarios

    Deconstructing Gaugino Mediation

    Get PDF
    We present a model of supersymmetry breaking which produces gaugino masses and negligible scalar masses at a high scale. The model is inspired by ``deconstructing'' or ``latticizing'' models in extra dimensions where supersymmetry breaking and visible matter are spatially separated. We find a simple four-dimensional model which only requires two lattice sites (or gauge groups) to reproduce the phenomenology.Comment: LaTeX, 9 pages, acknowledgements adde

    Implications of the Muon Anomalous Magnetic Moment for Supersymmetry

    Get PDF
    We re-examine the bounds on supersymmetric particle masses in light of the E821 data on the muon anomalous magnetic moment. We confirm, extend and supersede previous bounds. In particular we find (at one sigma) no lower limit on tan(beta) or upper limit on the chargino mass implied by the data at present, but at least 4 sparticles must be lighter than 700 to 820 GeV and at least one sparticle must be lighter than 345 to 440 GeV. However, the E821 central value bounds tan(beta) > 4.7 and the lighter chargino mass by 690 GeV. For tan(beta) < 10, the data indicates a high probability for direct discovery of SUSY at Run II or III of the Tevatron.Comment: 20 pages LaTeX, 14 figures; references adde

    Bottom-Tau Unification in SUSY SU(5) GUT and Constraints from b to s gamma and Muon g-2

    Full text link
    An analysis is made on bottom-tau Yukawa unification in supersymmetric (SUSY) SU(5) grand unified theory (GUT) in the framework of minimal supergravity, in which the parameter space is restricted by some experimental constraints including Br(b to s gamma) and muon g-2. The bottom-tau unification can be accommodated to the measured branching ratio Br(b to s gamma) if superparticle masses are relatively heavy and higgsino mass parameter \mu is negative. On the other hand, if we take the latest muon g-2 data to require positive SUSY contributions, then wrong-sign threshold corrections at SUSY scale upset the Yukawa unification with more than 20 percent discrepancy. It has to be compensated by superheavy threshold corrections around the GUT scale, which constrains models of flavor in SUSY GUT. A pattern of the superparticle masses preferred by the three requirements is also commented.Comment: 21pages, 6figure

    Novel mechanism of steroid action in skin through glucocorticoid receptor monomers

    Get PDF
    Glucocorticoids (GCs), important regulators of epidermal growth, differentiation, and homeostasis, are used extensively in the treatment of skin diseases. Using keratin gene expression as a paradigm of epidermal physiology and pathology we have developed a model system to study the molecular mechanism of GCs action in skin. Here we describe a novel mechanism of suppression of transcription by the glucocorticoid receptor (GR) that represents an example of customizing a device for transcriptional regulation to target a specific group of genes within the target tissue, in our case, epidermis. We have shown that GCs repress the expression of the basal-cell-specific keratins K5 and K14 and disease-associated keratins K6, K16, and K17 but not the differentiation-specific keratins K3 and K10 or the simple epithelium-specific keratins K8, K18, and K19. We have identified the negative recognition elements (nGREs) in all five regulated keratin gene promoters. Detailed footprinting revealed that the function of nGREs is to instruct the GR to bind as four monomers. Furthermore, using cotransfection and antisense technology we have found that, unlike SRC-1 and GRIP-1, which are not involved in the GR complex: that suppresses keratin genes, histone acetyltransferase and CBP are. In addition, we have found that GR, independently from GREs, blocks the induction of keratin gene expression by AP1. We conclude that GR suppresses keratin gene expression through two independent mechanisms: directly, through interactions of keratin nGREs with four GR monomers, as well as indirectly, by blocking the AP1 induction of keratin gene expression

    Supersymmetric Relations Among Electromagnetic Dipole Operators

    Full text link
    Supersymmetric contributions to all leptonic electromagnetic dipole operators have essentially identical diagramatic structure. With approximate slepton universality this allows the muon anomalous magnetic moment to be related to the electron electric dipole moment in terms of supersymmetric phases, and to radiative flavor changing lepton decays in terms of small violations of slepton universality. If the current discrepancy between the measured and Standard Model values of the muon anomalous magnetic moment is due to supersymmetry, the current bound on the electron electric dipole moment then implies that the phase of the electric dipole operator is less than 2×10−32 \times 10^{-3}. Likewise the current bound on Ό→eÎł\mu \to e \gamma decay implies that the fractional selectron-smuon mixing in the left-left mass squared matrix, \delta m_{\smuon \selectron}^2 / m_{\slepton}^2, is less than 10−410^{-4}. These relations and constraints are fairly insensitive to details of the superpartner spectrum for moderate to large tan⁥ÎČ\tan \beta.Comment: Latex, 38 pages, 2 figure

    Bi-large Neutrino Mixing and Mass of the Lightest Neutrino from Third Generation Dominance in a Democratic Approach

    Full text link
    We show that both small mixing in the quark sector and large mixing in the lepton sector can be obtained from a simple assumption of universality of Yukawa couplings and the right-handed neutrino Majorana mass matrix in leading order. We discuss conditions under which bi-large mixing in the lepton sector is achieved with a minimal amount of fine-tuning requirements for possible models. From knowledge of the solar and atmospheric mixing angles we determine the allowed values of sin \theta_{13}. If embedded into grand unified theories, the third generation Yukawa coupling unification is a generic feature while masses of the first two generations of charged fermions depend on small perturbations. In the neutrino sector, the heavier two neutrinos are model dependent, while the mass of the lightest neutrino in this approach does not depend on perturbations in the leading order. The right-handed neutrino mass scale can be identified with the GUT scale in which case the mass of the lightest neutrino is given as (m_{top}^2/M_{GUT}) sin^2 \theta_{23} sin^2 \theta_{12} in the limit sin \theta_{13} = 0. Discussing symmetries we make a connection with hierarchical models and show that the basis independent characteristic of this scenario is a strong dominance of the third generation right-handed neutrino, M_1, M_2 < 10^{-4} M_3, M_3 = M_{GUT}.Comment: typos correcte

    Supersymmetric Dark Matter and Yukawa Unification

    Get PDF
    An analysis of supersymmetric dark matter under the Yukawa unification constraint is given. The analysis utilizes the recently discovered region of the parameter space of models with gaugino mass nonuniversalities where large negative supersymmetric corrections to the b quark mass appear to allow b−τb-\tau unification for a positive ÎŒ\mu sign consistent with the b→s+Îłb\to s+\gamma and gΌ−2g_{\mu}-2 constraints. In the present analysis we use the revised theoretical determination of aÎŒSMa_{\mu}^{SM} (aÎŒ=(gΌ−2)/2a_{\mu}= (g_{\mu}-2)/2) in computing the difference aÎŒexp−aÎŒSMa_{\mu}^{exp}-a_{\mu}^{SM} which takes account of a reevaluation of the light by light contribution which has a positive sign. The analysis shows that the region of the parameter space with nonuniversalities of the gaugino masses which allows for unification of Yukawa couplings also contains regions which allow satisfaction of the relic density constraint. Specifically we find that the lightest neutralino mass consistent with the relic density constraint, bτb\tau unification for SU(5) and b−t−τb-t-\tau unification for SO(10) in addition to other constraints lies in the region below 80 GeV. An analysis of the maximum and the minimum neutralino-proton scalar cross section for the allowed parameter space including the effect of a new determination of the pion-nucleon sigma term is also given. It is found that the full parameter space for this class of models can be explored in the next generation of proposed dark matter detectors.Comment: 28 pages,nLatex including 5 fig
    • 

    corecore