306 research outputs found

    Mesons and the Structure of Nucleons

    Full text link
    The role of mesons, particularly the pion, in the structure of nucleons is reviewed and investigated. Since quark-antiquark pairs are likely to ``transform" into mesons at large distances, mesons are expected to contribute to nucleon structure. Their effects on the Gottfried sum rule, on the strangeness content of the nucleon, and on the spin of the nucleon are discussed.Comment: 15 pages, TeX file followed by 3 uuencoded PostScript figures (optional), DOE/ER/40427-08-N9

    New approach to 4^4He charge distribution

    Get PDF
    We present a study of the 4^4He charge distribution based on realistic nucleonic wave functions and incorporation of the nucleon's quark substructure. The central depression of the proton point density seen in modern four-body calculations is too small by itself to lead to a correct description of the charge distribution. We utilize six-quark structures calculated in the Chromodielectric Model for N-N interactions, and we find a swelling of the proton charge distribution as the internucleon distance decreases. These charge distributions are combined with the 4^4He wave function using the Independent Pair Approximation and two-body distributions generated from Green's Function Monte Carlo calculations. We obtain a reasonably good fit to the experimental charge distribution without including meson exchange currents.Comment: 9 pages, LaTeX, 4 figures (Figures 1 and 2 doesn't exist as postscript files : they are only available on request

    The Nucleon-Nucleon Interaction in the Chromo-Dielectric Soliton Model: Dynamics

    Get PDF
    The present work is an extension of a previous study of the nucleon-nucleon interaction based on the chromo-dielectric soliton model. The former approach was static, leading to an adiabatic potential. Here we perform a dynamical study in the framework of the Generator Coordinate Method. In practice, we derive an approximate Hill-Wheeler differential equation and obtain a local nucleon-nucleon potential as a function of a mean generator coordinate. This coordinate is related to an effective separation distance between the two nucleons by a Fujiwara transformation. This latter relationship is especially useful in studying the quark substructure of light nuclei. We investigate the explicit contribution of the one-gluon exchange part of the six-quark Hamiltonian to the nucleon-nucleon potential, and we find that the dynamics are responsible for a significant part of the short-range N-N repulsion.Comment: 16 pages (REVTEX), 6 figures (uuencoded Postscript) optionally included using epsfig.st

    ON THE INTRINSIC CHARM COMPONENT OF THE NUCLEON

    Get PDF
    Using a D\overline D meson cloud model we calculate the squared charm radius of the nucleon . The ratio between this squared radius and the ordinary baryon squared radius is identified with the probability of ``seeing'' the intrinsic charm component of the nucleon. Our estimate is compatible with those used to successfully describe the charm production phenomenology.Comment: 9 pages, 2 figures not included, avaiable from the author

    Reduction-Based Creative Telescoping for Algebraic Functions

    Full text link
    Continuing a series of articles in the past few years on creative telescoping using reductions, we develop a new algorithm to construct minimal telescopers for algebraic functions. This algorithm is based on Trager's Hermite reduction and on polynomial reduction, which was originally designed for hyperexponential functions and extended to the algebraic case in this paper

    Omega Meson Cloud and the Proton's Light Anti-Quark Distribution

    Get PDF
    We use the meson cloud model of the nucleon to calculate distribution functions for (dˉuˉ)(\bar {d} - \bar{u}) and dˉ/uˉ \bar{d}/\bar{u} in the proton. Including the effect of the omega meson cloud, with a coupling constant gω2/4π8g_\omega^2/4\pi\approx 8, allows a reasonably good description of the data.Comment: 6 pages, 2 figures, LaTe
    corecore