1,066 research outputs found
Charge-Transfer Bonding in MetalâArene Coordination
X-ray crystallographic structures of donorâacceptor complexes of aromatic hydrocarbons with transition metals are re-examined with the focus on the arene ligands. Thus, significant structural and electronic changes are revealed in the arene moiety due to coordination to the metal center including: (i) expansion of the aromatic six-carbon ring; (ii) endocyclic Ď-bond localization; (iii) distortion of the planarity (folding) of the arene ring; and (iv) shortening of the metal-arene bond distances. All structural features are characteristic of metalâarene (Ď- or Ď-) complexes that exhibit various degrees of (metal-to-ligand) charge transfer. The concept of charge-transfer bonding not only explains the structural details but also the various facets of chemical reactivity of metal-coordinated arenes including efficient carbon-hydrogen bond activation and nucleophilicâelectrophilic umpolung, both of which are critical factors in homogeneous metal catalysis
Photoinduced Coupling of Acetylenes and Quinone in the Solid State as Preorganized DonorâAcceptor Pairs
Crystalline electron donorâacceptor (EDA) complexes of various diarylacetylenes (DA) and dichlorobenzoquinone (DB) are isolated and structurally characterized by X-ray crystallography. Deliberate excitation of either the DB acceptor at ÎťDB = 355 nm or the 1:2 [DA, 2DB] complex at ÎťCT = 532 nm in the solid state leads to [2 + 2] cycloaddition and identical (isomeric) mixtures of the quinone methide products. Time-resolved (ps) diffuse reflectance spectroscopy identifies the ion-radical pair [DAâ˘+, DBâ˘-] as the reactive intermediate derived by photoinduced electron transfer in both photochemical procedures. The effects of crystal-lattice control on the subsequent ion-radical pair dynamics are discussed in comparison with the same photocouplings of acetylenes and quinone previously carried out in solution
Isolation and X-ray Structures of Labile Benzoic- and Acetic-Acidium Carbocations
New carbocationic salts (via O-protonation of substituted benzoic acids) are prepared for the first time by controlled hydration of the corresponding benzoylium salts and isolated in pure crystalline form. Precise X-ray structural analyses reveal the rather unexpected (electronic) structure of the carboxylic-acidium functionality
Crystallographic Distinction between âContactâ and âSeparatedâ Ion Pairs:â Structural Effects on Electronic/ESR Spectra of Alkali-Metal Nitrobenzenides
The classic nitrobenzene anion-radical (NB-⢠or nitrobenzenide) is isolated for the first time as pure crystalline alkali-metal salts. The deliberate use of the supporting ligands 18-crown-6 and [2.2.2]cryptand allows the selective formation of contact ion pairs designated as (crown)M+NB-â˘, where M+ = K+, Rb+, and Cs+, as well as the separated ion pair K(cryptand)+NB-â˘both series of which are structurally characterized by precise low-temperature X-ray crystallography, ESR analysis, and UVâvis spectroscopy. The unusually delocalized structure of NB-⢠in the separated ion pair follows from the drastically shortened NâC bond and marked quinonoidal distortion of the benzenoid ring to signify complete (95%) electronic conjugation with the nitro substituent. On the other hand, the formation of contact ion pairs results in the substantial decrease of electronic conjugation in inverse order with cation size (K+ \u3e Rb+) owing to increased localization of negative charge from partial (NO2) bonding to the alkali-metal cation. Such a loss in electronic conjugation (or reverse charge transfer) may be counterintuitive, but it is in agreement with the distribution of odd-electron spin electron density from the ESR data and with the hypsochromic shift of the characteristic absorption band in the electronic spectra. Most importantly, this crystallographic study underscores the importance of ion-pair structure on the intrinsic property (and thus reactivity) of the component ions - as focused here on the nitrobenzenide anion
Isolation, X-ray Structures, and Electronic Spectra of Reactive Intermediates in FriedelâCrafts Acylations
Reactive intermediates in the FriedelâCrafts acylation of aromatic donors are scrutinized upon their successful isolation and X-ray crystallography at very low temperatures. Detailed analyses of the X-ray parameters for the [1:1] complexes of different aliphatic and aromatic-acid chlorides with the Lewis acids antimony pentafluoride and pentachloride, gallium trichloride, titanium and zirconium tetrachlorides provide unexpected insight into the activation mechanism for the formation of the critical acylium carbocations. Likewise, the X-ray-structure examinations of aliphatic and aromatic acylium electrophiles also isolated as crystalline salts point to the origins of their electrophilic reactivity. Although the Wheland intermediates (as acylium adducts to arene donors) could not be isolated in crystalline form owing to their exceedingly short lifetimes, transient (UVâvis) spectra of benzenium adducts of acylium carbocations with hexamethylbenzene can be measured and directly related to Wheland intermediates with other cationic electrophiles that have been structurally established via X-ray studies
Structural Effects of Carbon Monoxide Coordination to Carbon Centers. Ď and Ď Bindings in Aliphatic Acyl \u3cem\u3eversus\u3c/em\u3e Aromatic Aroyl Cations
The binding of carbon monoxide to carbon centers has been examined with two series of aromatic and aliphatic oxocarbonium ions that are successfully isolated as crystalline and highly reactive (hygroscopic) aroylium and acylium salts with poorly coordinating counteranions. X-Ray crystallographic analyses at â150 °C afford precise structural parameters for the characteristic linear carbonyl bond (rCO) and the bond to the carbon centers (rCÎą). The correlations of these structural parameters evaluated for alkyl (Me, Et and i-Pr) and aryl (p-Me, 2,4,6-trimethyl, p-MeO and p-fluorophenyl) oxocarbonium ions with the corresponding carbonyl stretching frequencies in the solid-state (reflectance) IR spectra yield valuable insight into the binding mode of carbon monoxide. Most noteworthy is the synergic (ĎâĎ) bonding in aroylium structures in contrast to the mainly Ď bonding in acylium structures that are organic mimics for carbon monoxide bonding in classical and nonclassical metal carbonyls, respectively
DielsâAlder Topochemistry via Charge-Transfer Crystals:â Novel (Thermal) Single-Crystal-to-Single-Crystal Transformations
The solid-state [4+2] cycloaddition of anthracene to bis(N-ethylimino)-1,4-dithiin occurs via a unique single-phase topochemical reaction in the intermolecular (1:1) charge-transfer crystal. The thermal heteromolecular solid-state condensation involves the entire crystal, and this rare crystalline event follows topochemical control during the entire cycloaddition. As a result, a new crystalline modification of the DielsâAlder product is formed with a crystal-packing similar to that of the starting charge-transfer crystal but very different from that of the (thermodynamically favored) product modification obtained from solution-phase crystallization. Such a single-phase transformation is readily monitored by X-ray crystallography at various conversion stages, and the temporal changes in crystallographic parameters are correlated with temperature-dependent (solid-state) kinetic data that are obtained by 1H NMR spectroscopy at various reaction times. Thus, an acceleration of the solid-state reaction over time is found which results from a progressive lowering of the activation barrier for cycloaddition in a single crystal as it slowly and homogeneously converts from the reactant to the product lattice
Novel Charge-Transfer Materials via Cocrystallization of Planar Aromatic Donors and Spherical Polyoxometalate Acceptors
Spherical polyoxometalates (POMs) such as M6O192- and SiM12O404- (with M = Mo or W) and planar arene donors (anthracenes and pyrenes) can be cocrystallized (despite their structural incompatibility) by attaching a cationic âanchorâ onto the arene which then clings to the POM anion by Coulombic forces. As a result, novel charge-transfer (CT) salts are prepared from arene donors and Lindqvist-type [M6O19]2- and Keggin-type [SiM12O40]4- acceptors with overall 2:1 and 4:1 stoichiometry, respectively. The CT character of the dark-colored (yellow to red) crystalline materials is confirmed by the linear Mulliken correlation between the CT transition energies and the reduction potentials of the POM acceptors, as well as by the transient (diffuse reflectance) absorption spectra (upon picosecond laser excitation) of anthracene or pyrene cation radicals (in monomeric and Ď-dimeric forms). X-ray crystallographic studies reveal a unique âdimericâ arrangement of the cofacially oriented arene couples which show contact points with the oxygen surface of the POMs that vary with distance, depending on the POM/arene combination. Moreover, the combination of X-ray crystallographic and spectroscopic techniques results in the observation of a logical structure/property relationshipthe shorter the distance between the POM surface and the arene nucleus, the darker is the color of the CT crystal and the faster is the decay of the laser-excited charge-transfer state (due to back-electron transfer)
- âŚ