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Abstract: 
The binding of carbon monoxide to carbon centers has been examined with two series of aromatic and aliphatic 
oxocarbonium ions that are successfully isolated as crystalline and highly reactive (hygroscopic) aroylium and 
acylium salts with poorly coordinating counteranions. X-Ray crystallographic analyses at −150 °C afford precise 
structural parameters for the characteristic linear carbonyl bond (rCO) and the bond to the carbon centers (rCα). 
The correlations of these structural parameters evaluated for alkyl (Me, Et and i-Pr) and aryl (p-Me, 2,4,6-
trimethyl, p-MeO and p-fluorophenyl) oxocarbonium ions with the corresponding carbonyl stretching 
frequencies in the solid-state (reflectance) IR spectrayield valuable insight into the binding mode of carbon 
monoxide. Most noteworthy is the synergic (π–σ) bonding in aroylium structures in contrast to the mainly σ 
bonding in acylium structures that are organic mimics for carbon monoxide bonding in classical and 
nonclassical metal carbonyls, respectively. 

Introduction 
Owing to the relevance of carbon monoxide to a wide variety of metal-catalyzed processes of industrial 
importance, includinghydroformylation, Fischer–Tropsch, carboxylation, etc. various types of metal 
carbonyls M(CO)x have been isolated, synthesized and characterized as critical intermediates. Bonding among 
different metal carbonyls, especially of the transition series, is dominated by the classical model of synergic (σ–π) 
interactions of the CO base with different M-centered acids.1 Recently, a different type of metal–carbonyl 
binding in which the usual π backbonding component is weak or nonexistent has been proposed for a new series 
of “nonclassical” metal carbonyls (the primary acid–base interaction deriving from a dominant metal σ 
orbital).2However, in metal–carbonyl bindings, the relative contributions of the σ and π components are difficult 
to assess quantitatively owing to the varying nature of the metal centers. It is thus noteworthy that there are a 
few examples from the organic literature in which CO is directly bonded only to carbon centers in the form of 
oxocarbonium moieties3 of two basic types, that is, (A) aromaticaroyl,4 and (B) aliphatic acyl cations.5 The first 
member of the aromatic class is the benzoyl cation (C6H5–C O+) that allows direct π backbonding of the 
benzenoid ring to the σ-bonded CO substituent. Likewise, the first member of the aliphatic class 
isacetyl cation (CH3–C O+), in which the dominant σ bond allows little or no possibility of direct π conjugation. 
Importantly, both of these organic cations permit the effects of small (electronic) perturbations to be 
systematically examined by: (A) judicious placement of substituent groups on the phenyl ring, and (B) α 
branching at the methyl group, as depicted below: 

 

   
Acetyl cation was first isolated by Olah et al.3 in their now classic studies on the reactive intermediates in Friedel–
Crafts acylations, and the X-ray crystallographic analysis of their colorless crystals was later reported by 
Boer.5 The corresponding X-ray structure of benzoyl cation is unreported, but the close analogs, the o- and p-
methyl derivatives, were successfully examined by Le Carpentier, Weiss et al.4 In both cases, diffraction data were 
only collected at room temperature. The resulting limited precision (accuracy) of 1–1.5 pm (e.s.d.) did allow the 
overall structure elucidation, but was clearly insufficient for any quantitative or comparative conclusions to be 
drawn among various structural types. Accordingly in this study, we minimized such imprecisions (arising largely 
from thermal motion) by the low temperature re-examination of these structures, together with preparation of 
a new (extended) series of other aroylium and acylium salts. 
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Results 

Isolation and crystallization of pure aroylium and acylium salts suitable for X-ray crystallography posed serious 
experimental difficulties for two principal reasons. First, as cationic salts, the choice of the appropriate 
(complex) counteranion for solubility in anhydrous solvents was critical, and an anion suitable for a given 
oxocarbonium salt was not predictably applicable to a close relative. Second, all oxocarbonium salts were 
sensitive to traces of moisture in the solvent and glassware, being extremely hygroscopic.6 For these reasons, the 
entries in the following tables were largely dictated by what we were successfully able to isolate; but we believe 
their number and variety were sufficient to establish the unique structural patterns of π and σ bonding relevant 
to aromatic versus aliphatic oxocarbonium structures as follows. 

I. Synthesis and isolation of oxocarbonium salts 
Two synthetic methodologies were utilized in the preparation of crystalline oxocarbonium salts suitable for X-ray 
crystallography. The more direct approach (Method A) was based on Lewis acids such as antimony pentachloride 
and gallium trichlorideapplicable to Friedel–Crafts acylation with acid chlorides,3 

Method A: RCOCl + GaCl3 → RCO+GaCl4− (1) 

in dichloromethane solution to generate the coordinatively saturated and low nucleophilic counteranions 
SbCl6− and GaCl4−, respectively. The second method (Method B) was also found in Olah’s earlier studies,3 and 
employed silver(I): 

Method B: RCOCl + AgSbF6 → RCO+SbF6
− + AgCl (2) 

This method depended on the careful separation of silver chloride even as a trace contaminant that could otherwise 
inhibitcrystallization. Methods A and B were used interchangeably because optimum conditions for successful 
crystallinity and solubility were largely a matter of trial and error among numerous attempts. 

II. X-Ray crystallography of pure oxocarbonium salts 
 

In order to quantitatively evaluate electronic effects on structure, the X-ray crystallographic analyses of the various 
acylium and aroylium salts were consistently carried out at −150 °C to a uniform precision of (e.s.d) 0.3–0.5 pm. In each 
case, the X-ray structural data were supplemented by infrared (reflectance) analyses of the carbonyl stretching 
frequency (νCO) in crystalline samples, as follows. 

A. Aliphatic acyl cations. The low-temperature re-determination of the crystal structure of the acetyl salt CH3–C
O+SbF6−(earlier thought to be disordered2) yielded the structural parameters in Table 1 with good 

precision.7 We were also able to improve the earlier (imprecise) data8 on the structure of Et–C O+GaCl4−, which 
together with the recent (low-temperature) determination2 of i-Pr–C O+SbCl6− provided us with systematic 
observations on structure and electronic features of the aliphatic acyl cations in Table 1. Extension of the series 
to the highly branched pivaloyl cation was precluded owing to the reversible ready loss of carbon monoxide:9 

(CH3)3C–CO+ ⇄ (CH3)3C+ + CO (3) 
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Table 1 Geometric and IR parameters of aliphatic acyl cationsa 

 

   
Cation X− a/Å b/Å α/deg ν(CO)/cm−1 Source (Method) 

a Reliable data used for the discussion are given in bold. 

Me–C O+ SbF6− 1.108(4) 1.419(4) 179.2(3) 2302 This work 
(A)                                                        

1.11 1.39 177 2294Ref. 3 Ref. 5                                                        

Et–C O+ GaCl4− 1.102(5) 1.424(6) 178.6(5) 2282 This work 
(A)                                                        

1.07 1.43 177 — Ref. 8b                                                        

i-Pr–C
O+ 

SbCl6− 1.101(4) 1.458(4) 177.4(3) 2257 Ref. 
2 

Ref. 2 
                                                       

1.12 1.44 176 — Ref. 8b                                                        

The ORTEP diagram of the ethyl derivative Et–CO+GaCl4− in Fig. 1(A) shows the linear coordination of CO in the basic 3 
atom fragment Cα–C–O; and the (distorted) tetragonal disposition of chlorine from three GaCl4− anions about the 
cationic center (rC⋯Cl3.28–3.48 Å) is identified by the unit-cell fragment in Fig. 1(B).10Table 1 also includes 
the carbonyl stretching frequencies (last column) obtained from IR reflectance measurements on crystalline 
oxocarbonium salts (see Experimental). 

 

 

 
Fig. 1 (A) ORTEP diagram (50% probability ellipsoids) of Et–CO+ showing the linear coordination of carbon 
monoxide. (B) Unit cell fragment showing the distorted tetragonal coordination of three GaCl4− about the 
cationic center. 
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B. Aromatic aroyl cations. Since our initial attempts to obtain single crystals of benzoylium salts with various 
counteranions suffered badly from low solubilities, we re-determined the structure of the methyl derivative p-
CH3C6H4–CO+SbCl6− at −150 °C with superior resolution to that earlier reported by Le Carpentier, Weiss et al.4 In 
addition, the structural parameters are reported inTable 2 for the 2,4,6-trimethyl (Mes) and 2,3,4,5,6-pentamethyl 
(Me5C6) derivatives together with those of the p-fluoro- and p-methoxy-substituted analogs. 

Table 2 Geometric and IR parametersa of the aromatic aroyl cations 

 

   
Cation-anion pair (method) a/Å b/Å α/deg c/Å d/Å e/Å ν(CO)/cm−1 

a Reliable data used for discussion are given in bold; the actual precision of geometric parameters for Mes–C O+SbCl6−, p-
MeOC6H4–C O+SbF6− and p-FC6H4–C O+SbF6− is higher because these are averaged over two symmetrically independent 
molecules. b For the corresponding SbF6 salt. 

p-
MeC6H4–
C
O+ SbCl6− (
A) 

1.116(2) 1.391(2) 179.2(2
) 

1.405(2) 1.378(2) 1.400(2) 2220
 b                                                       

1.10(1)R
ef. 4 

1.40(1)R
ef. 4 

179(1)R
ef. 4 

1.40(1)R
ef. 4 

1.36(1)R
ef. 4 

1.39(1)R
ef. 8 

— 
                                                      

Mes–C
O + SbCl6− 
(A) 

1.121(4) 1.375(4) 178.1(4
) 

1.420(3) 1.368(4) 1.397(4) 2203
 b                                                       

Me5C6–C

O+ SbF6− (
B) 

1.11(1) 1.39(1) 178(1) 1.42(1) 1.39(1) 1.42(2) 2197 

                                                      

p-
MeOC6H4

–C
O+ SbF6− (
B) 

1.125(8) 1.375(9) 177.6(7
) 

1.410(9) 1.360(9) 1.396(9) 2215 

                                                      

p-FC6H4–C

O+ SbF6− (
B) 

1.113(5) 1.391(5) 178.9(5
) 

1.395(6) 1.366(6) 1.374(6) 2226 

                                                      

The structures of the p-methyl and 2,4,6-trimethylbenzoyl cations as well as the fluoro-substituted derivative 
were established to good experimental precision, whereas the permethylated and methoxy structures were 
affected by crystallographic disorder. The problem is especially pernicious in the case of the 
permethylated cation in which a small fraction (less than 10%) of the disk-shaped cations has the methyl and 
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carbonyl groups permuted. This disorder compromised the reliability of the structural parameters owing to the 
(effective) shift of the carbonyl carbon toward the oxygen and away from the benzene ring. Nevertheless, the 
crystallographic data in Table 2 provide sufficient structural information to discuss the principal structural and 
electronic features of aromatic aroyl carbocations. 

 

 

 Fig. 2 (A) ORTEP diagram (50% probability ellipsoids) of the p-fluorobezoyl cation showing the linear 
coordination of carbon monoxide. (B) Tetragonal coordination of SbF6− anions about the cationic center. 

 

 

The ORTEP diagram in Fig. 2(A) of the fluorobenzoyl moiety in p-FC6H4–CO+ SbF6− is a typical representation of the basic 
3 atom fragment Cα–C–O showing the linear coordination of CO to the aromatic (substituent) group; and Fig. 
2(B) emphasizes the tetragonal disposition of SbF6− anions (rC⋯F 2.69–2.94 Å) about the cationic carbon center.10 

Discussion 
I. Sigma binding of carbon monoxide in aliphatic acyl cations 
 

The nature of the alkyl coordination in the series of acyl cations (Table 1) is revealed in the variation of two structural 
parameters: (i) the carbonyl bond length (rCO) and (ii) the bonding distance to the alkyl group (rCα). As expected for a 
linear 3-center array, the variation of rCO runs counter to that in rCα, that is, the general trends in rCO and rCα are 
opposed.11 Furthermore, the correlation of the carbonyl bond length rCO with the carbonyl stretching frequency νCO has 
a qualitative trend12 which is opposite to expectations of the well-recognized bond-strength/bond-order 
interrelationship.11 Therefore, let us now normalize the structural parameters (ri) to the bond orders (ni) as described by 
Pauling.13 

In Table 3,13 the calculated carbonyl bond order encompasses a rather narrow range centered around nCO = 2.72, 
whereas the alpha bond to the alkyl substituent is significantly more variant around nCα = 1.22. It is thus interesting to 
note that the total bond order (∑n) is rather close to 4 (required by the simple octet rule) with one exception, that is, 
∑n for the isopropyl derivative is clearly less than 4.14–19 In other words, the Pauling approach alone does not adequately 
account for the electronic effects of the isopropyl group relative to those of either methyl or ethyl. 
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Table 3 Pauling bond orders for aliphatic acyl cations 

Alkyl–CO+ n CO n Cα ∑n 

Me–CO+ 2.69(3) 1.32(2) 4.01(4) 

Et–CO+ 2.74(4) 1.29(4) 4.03(6) 

i-Pr–CO+ 2.75(3) 1.11(2) 3.86(4) 
 

The inspection of Table 3 reveals that the bond order nCα for isopropyl is unusually low and largely responsible for (a) 
the total bond order ∑n less than 4, and (b) the strong non-linear deviation of rCα. Since the Pauling paradigm of bond 
order in Table 3 is mainly focussed on the variation of the π component,14c the shortening of rCO in 
the isopropyl derivative is not adequately compensated in the (excess) lengthening of rCα. The discrepancy is seen 
in Table 3 for isopropyl with ∑n substantially less than 4, and this indicates that the π component alone is not sufficient 
to satisfy the octet requirement.14d Since earlier physical-organic studies20 indicated that the σ-donor property of 
the isopropyl group is enhanced relative to that of either methyl or ethyl, we suggest that the electron deficit (of ∼0.3 
e) is compensated by an inductive effect operating through the σ bond.14d Such a σ-inductive effect also accounts for 
the inverse order in the carbonyl stretching frequencies,13,21 and is in complete accord with the previous conclusions 
about the bonding in “nonclassical” metal carbonyls.2 

II. Pi binding of carbon monoxide in aromatic aroyl cations 
 

In the substituent effect on the series of aroyl structures presented in Table 2, the general trend of the carbonyl bond 
length (rCO) is opposed to the trend for aryl separation from CO (rCα) which is consistent with the expectations of such 
compensating changes in bond lengths for the linear Cα–C–O unit. However, both are opposite to the trends 
in rCO and rCα for the aliphatic acyl cationsas presented in Table 1. Most revealingly, the trend in the bond correlation for 
the aroyl cations is also opposed to that for acylcations.12 Indeed, the inverse slope is the one expected for the Pauling 
analysis based on predominant π conjugation, and it is in accord with the π backbonding generally observed in 
transition metal carbonyls. 

In aromatic aroyl cations, the electronically unsaturated (cationic) center adopts the linear sp-hybridized configuration 
as shown by all α values in Table 2 very close to 180°. Most importantly, the carbonyl bonds (rCO) are 1–2 pm longer 
than those in the aliphatic acyl cations owing to π conjugation with the aromatic substituent; and this elongation is 
consistent with the reduced IR stretching frequency of the carbonyl group by ΔνCO = 30–100 cm−1. Specifically in the p-
methylbenzoyl cation, π conjugation achieves almost 100% efficiency as follows from the α bond length of rCα = 1.391 
Å, which coincides with the standard value of 1.39 Å for the aromatic conjugated carbon–carbon π bond.16 Such a 
conjugation is accompanied by an elongation of the carbonylbond by ΔrCO = 0.7–1.3 pm relative to that observed in the 
aliphatic acyl cations, as well as a significant quinonoidal distortion of the benzenoid ring.22 As expected, the presence 
of two additional methyl groups as in the mesitoyl cation further increases π conjugation by the bond length changes 
of ΔrCO = 0.6 pm and ΔrCα = 1.6 pm, together with further quinonoidal distortion.23 The introduction of the strong π-
donor substituent as in the anisoyl cation promotes the development of π conjugation since the Ar–CO bond of rCα = 
1.125 Å is the longest and the quinonoidal distortion is the greatest. Remarkably, this structural change in 
MeOC6H4CO+ is not reflected in the decreased νCO = 2215 cm−1, and results in its poor correlation.24 At the other 
extreme, the introduction of fluorine as an electron-acceptor substituent in p-FC6H4CO+ results in the least π-
conjugated carbocationic center with the shortest rCα = 1.112 Å (and with an increased stretching frequency of νCO = 
2226 cm−1.25 The computation of the Pauling bond order in Table 426 shows that π conjugation is sufficient to complete 
the octet requirement with ∑n clearly equal to 4.0 for all the aromatic aroyl cations in contrast to the values of ∑n for 
the acyl cations listed in Table 3. 
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Table 4 Pauling bond orders for aromatic aroyl cations 

Ar–CO+ n Cα n CO ∑n 

MeC6H4–CO+ 2.62(2) 1.34(1) 3.97(2) 

2,4,6-Me3C6H2–CO+ 2.58(3) 1.41(3) 3.99(4) 

p-MeOC6H4–CO+ 2.55(6) 1.41(6) 3.96(9) 
p-FC6H4–CO+ 2.65(4) 1.31(3) 3.96(5) 
 

Summary and conclusions 
Highly electrophilic oxocarbonium structures R–CO+ were synthesized from the corresponding acid halides (using 
strong Lewis acids or silver(I) salts) and isolated as crystalline solids in the presence of low-nucleophilic counteranions 
such as SbCl6−, SbF6− or GaCl4−. Precise low-temperature X-ray structural data were obtained for the aliphatic 
carbocations: CH3–C O+SbF6− and MeCH2–C O+GaCl4−, which together with the latest literature data7 on Me2CH–C

O+SbCl6− comprise the first reliable series of structural measurements on these important electronically unsaturated 
species as the key intermediates of Friedel–Crafts reaction. For the aromatic analogs, the structure of p-Me–C6H4–C
O+SbCl6− was re-determined with superior precision and its 2,4,6-trimethyl and 2,3,4,5,6-pentamethyl analogs were 
studied for the first time. The aromatic series was also extended to an even more electron-donor 
substituted benzoyl cation such as p-MeO–C6H4–C O+ as well as electron-poor substituted p-F–C6H4–C O+. Solid-
state IR spectra were measured for the all carbocations investigated. 

For both series of the oxocarbonium structures, the following general structural features are confirmed: (a) significant 
triple character of the carbonyl bond as follows from its length (1.10–1.11 Å for the aliphatic and 1.11–1.12 Å for the 
aromatic oxocarbonium structures) and from the enhanced IR stretching frequency (∼2300 cm−1 for the aliphatic and 
∼2200 cm−1 for the aromatic series); (b) significant shortening of the adjacent single bond with rCα (up to 1.42 and 1.37 
Å, in the aliphatic and the aromatic cations, respectively) due to electronic σ-π hyperconjugation of the aliphatic moiety 
and π–π conjugation of the aromatic moiety with the electronically deficient carbocationic center; (c) the sp1-
hybridized linear configuration of the carbocationic centers characterized by the α angle in Cα–C O close to 180°. 

In addition, for the aliphatic acyl cations, it was found that the σ–π hyperconjugation is not as strong as it was earlier 
deduced from less precise data. Nevertheless, hyperconjugation in CH3–C O+ and MeCH2–C O+ cations can be 
qualitatively estimated as 60% of the complete (1-electron benzenoid) conjugation that results in the shortest value of 
1.42 Å for this bond type. The effectiveness of the σ–π hyperconjugation is significantly reduced in Me2CH–C O+, 
owing to the availability of only a single Cα–H bond. The geometry of the carbonyl group in acyl cations is almost 
unaffected by hyperconjugation, but shows significant bathochromic shifts in the IR spectra with the number of 
electron-donor groups at the β carbon center, that is, IR frequency of the carbonyl group decreases in the order: H3C–C

O+ > MeCH2–C O+ > Me2CH–C O+, which is opposite to the degree of the hyperconjugation. This somewhat 
paradoxical spectroscopic behavior can be explained from the linear sp configuration of the carbocationic center in 
which the σ-bonding orbital of the single bond interacts with the σ-antibonding orbital of the carbonyl group. 

Aromatic aroyl cations show π–π conjugation between the carbocationic center and the adjacent benzene ring, which 
increases progressively with the aryl donicity. The shortening of the single (conjugated) bond C–C of up to 1.37 Å with 
corresponding elongation of the triple bond C O of up to 1.125 Å tracks the decreasing IR (νCO) frequency. 
Conjugation also has a pronounced quinonoidal effect on the geometry of the benzene ring (which is less than that 
deduced earlier from less precise data). Interestingly, the electronegative methoxy oxygen has a significant enhancing 
effect on the IR frequency of the carbonyl group, apparently through the aforementioned σ–σ* inductive mechanism. 
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By contrast, the electron-accepting fluorosubstituent reduces the conjugation of the carbonyl group and raises the IR 
frequency to the most extreme values in the series. 

Experimental 
Materials 
The acyl halides (acetyl chloride, acetyl fluoride, propionyl chloride, p-toluyl chloride, p-anisoyl chloride and p-
fluorobenzoyl chloride) were from Aldrich. 2,4,6-Mesitoyl chloride and pentamethylbenzoyl chloride were prepared 
from the corresponding carboxylic acids (Aldrich) by treatment with oxalyl chloride (Aldrich). SbCl5, SbF5 and 
AgSbF6 from Aldrich were used without additional purification. Dichloromethane, benzene and hexane were purified 
according to published procedures.29 1,1,2-Trifluorotrichloroethane (Freon 113) from Aldrich was used without 
additional purification. 

Synthesis of 2,4,6-trimethylbenzoyl chloride and pentamethylbenzoyl chloride 
 

The corresponding 2,4,6-trimethylbenzoic (2 g or 12 mmol) or pentamethylbenzoic acid (10 mmol) were dissolved in 
10 ml ofbenzene and a large excess (5 times) of oxalyl chloride was introduced (7.7 and 6.6 g, respectively) under 
stirring. The mixture was stirred under an argon atmosphere for 3 h. The solvent and the residual oxalyl chloride were 
removed under vacuum, and the remainder of the solution was distilled under reduced pressure (b.p. 121 and 140 °C 
at 20 mm Hg, respectively; yield 50–55%). 

Syntheses of alkyl and aryloxocarbonium salts 
 

The oxocarbonium salts were prepared using literature methods involving two general synthetic procedures described 
as methods (A) and (B) in eqns. (1) and (2). Method (A) was used for acyl and aroyl halides with either X = F and PF5, 
BF3, SbF5, AsF5 or X = Cl and AlCl3, GaCl3, SbF5. Method B was used for acyl and aroyl chlorides and silver(I) PF6−, BF4−, 
SbF6−, AsF6−. It is important to mention that the target oxocarbonium salts are extremely sensitive to air. Their 
successful isolation required highly pure reagents and extreme precautions against moisture. The acid halides were 
always freshly distilled and anhydrous silver salts were carefully dried in vacuo (including cautious heating) prior to 
synthesis. The solvents were additionally passed through a column containing activated molecular sieves immediately 
prior to use. Generally, it is highly recommended to carry out all sample manipulations under an argon atmosphere in a 
rigorously water and air-free drybox. 

Methyloxocarbonium hexachloroantimonate (method A). Freshly distilled acetyl chloride (0.785 g, 10 mmol) was 
dissolved in 10 ml of dry dichloromethane under an argon atmosphere, and the solution was cooled to 0 °C. Under 
careful stirring, a solution of 5.98 g of SbCl5 (20 mmol) in 10 ml of dry dichloromethane was introduced. After 15 min of 
the continuous stirring, a white crystalline precipitate was collected, washed with cold CH2Cl2 and dried under vacuum. 
Single crystals suitable for X-ray analysis were obtained by slow cooling of the dry dichloromethane solution initially 
saturated at 40 °C. 

Acetyl hexafluoroantimonate (method A). Freshly distilled acetyl fluoride (0.62 g, 10 mmol) was dissolved in 10 ml 
of Freon 113 under an argon atmosphere, and the solution was cooled to −20 °C. An equimolar amount of SbF5 (2.17 g) 
was introduced with careful stirring. After 15 min of continuous stirring, a white crystalline precipitate was collected, 
washed with cold Freon and dried under vacuum. Single crystals suitable for X-ray analysis were obtained by 
slow evaporation of the Freon solution under an argon atmosphere. 
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Propionyl tetrachlorogallate (method A). Freshly distilled propionyl chloride (0.185 g, 2 mmol) was dissolved in 10 
ml of drydichloromethane under an argon atmosphere. 0.352 g of GaCl3 (2 mmol) was added into the stirred solution 
which was then cooled to −40 °C. A white crystalline precipitate was collected, washed out with cold CH2Cl2 and dried 
under vacuum. Single crystals suitable for X-ray analysis were obtained by slow evaporation (2 h) of the 
dichloromethane solution. 

4-Toluoyl hexachloroantimonate (method A). Freshly distilled p-toluyl chloride (0.46 g, 3 mmol) was dissolved in 15 
ml of drydichloromethane under an argon atmosphere. Under careful stirring, 5 ml of dichloromethane solution 
containing 0.89 g (3 mmol) of SbCl5 were introduced. The solution was covered with a layer of dry n-hexane (15 ml) and 
allowed to stand at −40 °C. Well-formed crystals of the target oxocarbonium salt were collected at the solvent interface 
after 3 days. 

2,4,6-Mesitoyl hexachloroantimonate (method A). Freshly prepared 2,4,6-trimethylbenzoyl chloride (90 mg, 0.5 
mmol) were dissolved in 7 ml of dry dichloromethane under an argon atmosphere. Under careful stirring, 5 ml of 
dichloromethane solution containing 0.14 g (0.5 mmol) of SbCl5 were introduced. The solution was covered with a layer 
of dry n-hexane (15 ml) and allowed to stand at −40 °C. Well-formed crystals of the target oxocarbonium salt were 
collected at the solvent interface after 2 days. 

Syntheses of pentamethylbenzoyl, 4-methoxybenzoyl, and 4-fluorobenzoyl hexafluoroantimonates (method 
B). Anhydrous silver(I) salt AgSbF6 (0.24 g, 0.7 mmol) were dissolved in 15 ml of dry dichloromethane. An equimolar 
amount of the corresponding aroyl halide (0.147, 0.120 and 0.111 g, respectively) was then added under stirring as a 
solution in a limited amount (∼5 ml) of dry dichloromethane. Stirring was continued for 10 min, then the AgCl 
precipitate was filtered off. Crystals suitable for X-ray study were obtained by slow evaporation of the filtrate (6–12 h) 
under an argon atmosphere. 

Carbonyl stretching frequencies 
 

Crystalline samples of the oxocarbonium salts were mounted directly on the germanium sampling plate of the single-
reflection HATR (Smart Miracle, Pike Technology) under an argon atmosphere, and the infrared spectra (Fig. 3) were 
measured with a Nexus 470 FT-IR (Thermo Nicolet). Alternatively, crystals for X-ray crystallographic analysis suspended 
in mineral oil were used, and the mineral oil background digitally subtracted.  
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 Fig. 3 Reflectance IR spectra (partial) of aroyl and acyl salts in the region of CO stretching vibrations.  

 
X-Ray crystallography† 
 

The intensity data for all the compounds were collected with a Siemens/Bruker SMART diffractometer equipped with 
an APEX CCD detector using MoKα radiation (λ = 0.710 73 Å), at −150 °C. In all cases, a semi-empirical absorption 
correction was applied.27The structures were solved by direct methods and refined by full matrix least-squares 
procedure28 with IBM Pentium and SGI O2computers. X-Ray structure details of the various salts are compiled in Table 
5 . 
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Table 5 Crystallographic parameters and the details of the structure refinements 

Compound MeCO+SbF
6− 

EtCO+GaCl
4− 

p-
TolCO+SbCl
6− 

MesCO+ SbCl
6− 

Me5C6CO+SbF6−·CH2

Cl2 
p-
MeOC6H4CO+Sb
F6− 

p-
FC6H4CO+SbF
6− 

Formula C2H3F6OSb C3H5Cl4Ga
O 

C8H7Cl6OSb C10H11Cl6OSb C13H17Cl2F6OSb C8H7F6O2Sb C7H4F7OSb 

M 278.79 268.59 453.59 481.64 495.92 370.89 358.85 
Space group P21/m P21/c P21/c P21/c P21/c C2/c P21/n 
a/Å 5.7299(7) 7.146(1) 11.7482(7) 9.2849(5) 7.6218(6) 19.061(1) 12.586(1) 
b/Å 7.7373(9) 9.487(2) 10.2038(6) 25.038(1) 12.7753(9) 10.4108(8) 12.396(1) 
c/Å 7.7479(9) 13.931(2) 12.4473(8) 14.9209(7) 18.242(1) 28.690(2) 13.079(1) 
β/° 100.187(2) 97.909(4) 93.428(1) 104.665(1) 90.641(1) 91.537(2) 92.252(2) 
U/Å3 338.08(7) 935.4(3) 1489.5(2) 3355.8(3) 1776.2(2) 5691.2(8) 2038.9(4) 
Z 2 4 4 8 4 20 8 
Dc/g cm−3 2.739 1.907 2.023 1.907 1.855 2.164 2.338 
Nref (collecte
d) 

3629 8621 15992 36634 19127 31114 22251 

Rint 0.0254 0.0485 0.0218 0.0219 0.0212 0.0342 0.0461 
Nref (indep.) 1150 3008 4714 10746 5693 9116 6591 
Nref [I > 2σ(I)] 1108 1829 4366 9254 5180 7508 4157 
R1 0.0201 0.0454 0.0202 0.0276 0.0295 0.0661 0.0437 
wR2 0.0502 0.0942 0.0496 0.0630 0.0723 0.1626 0.0914 
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Footnote 

† CCDC reference numbers 239194–239200 and 249788. See http://www.rsc.org/suppdata/nj/b4/b407654k/ for crystallographic data in 
.cif or other electronic format. 
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	Abstract:
	The binding of carbon monoxide to carbon centers has been examined with two series of aromatic and aliphatic oxocarbonium ions that are successfully isolated as crystalline and highly reactive (hygroscopic) aroylium and acylium salts with poorly coordinating counteranions. X-Ray crystallographic analyses at −150 °C afford precise structural parameters for the characteristic linear carbonyl bond (rCO) and the bond to the carbon centers (rCα). The correlations of these structural parameters evaluated for alkyl (Me, Et and i-Pr) and aryl (p-Me, 2,4,6-trimethyl, p-MeO and p-fluorophenyl) oxocarbonium ions with the corresponding carbonyl stretching frequencies in the solid-state (reflectance) IR spectrayield valuable insight into the binding mode of carbon monoxide. Most noteworthy is the synergic (π–σ) bonding in aroylium structures in contrast to the mainly σ bonding in acylium structures that are organic mimics for carbon monoxide bonding in classical and nonclassical metal carbonyls, respectively.
	Introduction
	I. Synthesis and isolation of oxocarbonium salts
	II. X-Ray crystallography of pure oxocarbonium salts

	Owing to the relevance of carbon monoxide to a wide variety of metal-catalyzed processes of industrial importance, includinghydroformylation, Fischer–Tropsch, carboxylation, etc. various types of metal carbonyls M(CO)x have been isolated, synthesized and characterized as critical intermediates. Bonding among different metal carbonyls, especially of the transition series, is dominated by the classical model of synergic (σ–π) interactions of the CO base with different M-centered acids.1 Recently, a different type of metal–carbonyl binding in which the usual π backbonding component is weak or nonexistent has been proposed for a new series of “nonclassical” metal carbonyls (the primary acid–base interaction deriving from a dominant metal σ orbital).2However, in metal–carbonyl bindings, the relative contributions of the σ and π components are difficult to assess quantitatively owing to the varying nature of the metal centers. It is thus noteworthy that there are a few examples from the organic literature in which CO is directly bonded only to carbon centers in the form of oxocarbonium moieties3 of two basic types, that is, (A) aromaticaroyl,4 and (B) aliphatic acyl cations.5 The first member of the aromatic class is the benzoyl cation (C6H5–C/O+) that allows direct π backbonding of the benzenoid ring to the σ-bonded CO substituent. Likewise, the first member of the aliphatic class isacetyl cation (CH3–C/O+), in which the dominant σ bond allows little or no possibility of direct π conjugation. Importantly, both of these organic cations permit the effects of small (electronic) perturbations to be systematically examined by: (A) judicious placement of substituent groups on the phenyl ring, and (B) α branching at the methyl group, as depicted below:
	Acetyl cation was first isolated by Olah et al.3 in their now classic studies on the reactive intermediates in Friedel–Crafts acylations, and the X-ray crystallographic analysis of their colorless crystals was later reported by Boer.5 The corresponding X-ray structure of benzoyl cation is unreported, but the close analogs, the o- and p-methyl derivatives, were successfully examined by Le Carpentier, Weiss et al.4 In both cases, diffraction data were only collected at room temperature. The resulting limited precision (accuracy) of 1–1.5 pm (e.s.d.) did allow the overall structure elucidation, but was clearly insufficient for any quantitative or comparative conclusions to be drawn among various structural types. Accordingly in this study, we minimized such imprecisions (arising largely from thermal motion) by the low temperature re-examination of these structures, together with preparation of a new (extended) series of other aroylium and acylium salts.
	Isolation and crystallization of pure aroylium and acylium salts suitable for X-ray crystallography posed serious experimental difficulties for two principal reasons. First, as cationic salts, the choice of the appropriate (complex) counteranion for solubility in anhydrous solvents was critical, and an anion suitable for a given oxocarbonium salt was not predictably applicable to a close relative. Second, all oxocarbonium salts were sensitive to traces of moisture in the solvent and glassware, being extremely hygroscopic.6 For these reasons, the entries in the following tables were largely dictated by what we were successfully able to isolate; but we believe their number and variety were sufficient to establish the unique structural patterns of π and σ bonding relevant to aromatic versus aliphatic oxocarbonium structures as follows.
	Two synthetic methodologies were utilized in the preparation of crystalline oxocarbonium salts suitable for X-ray crystallography. The more direct approach (Method A) was based on Lewis acids such as antimony pentachloride and gallium trichlorideapplicable to Friedel–Crafts acylation with acid chlorides,3
	(1)
	Method A: RCOCl + GaCl3 → RCO+GaCl4−
	in dichloromethane solution to generate the coordinatively saturated and low nucleophilic counteranions SbCl6− and GaCl4−, respectively. The second method (Method B) was also found in Olah’s earlier studies,3 and employed silver(I):
	(2)
	Method B: RCOCl + AgSbF6 → RCO+SbF6− + AgCl
	This method depended on the careful separation of silver chloride even as a trace contaminant that could otherwise inhibitcrystallization. Methods A and B were used interchangeably because optimum conditions for successful crystallinity and solubility were largely a matter of trial and error among numerous attempts.
	In order to quantitatively evaluate electronic effects on structure, the X-ray crystallographic analyses of the various acylium and aroylium salts were consistently carried out at −150 °C to a uniform precision of (e.s.d) 0.3–0.5 pm. In each case, the X-ray structural data were supplemented by infrared (reflectance) analyses of the carbonyl stretching frequency (νCO) in crystalline samples, as follows.
	A. Aliphatic acyl cations. The low-temperature re-determination of the crystal structure of the acetyl salt CH3–C/O+SbF6−(earlier thought to be disordered2) yielded the structural parameters in Table 1 with good precision.7 We were also able to improve the earlier (imprecise) data8 on the structure of Et–C/O+GaCl4−, which together with the recent (low-temperature) determination2 of i-Pr–C/O+SbCl6− provided us with systematic observations on structure and electronic features of the aliphatic acyl cations in Table 1. Extension of the series to the highly branched pivaloyl cation was precluded owing to the reversible ready loss of carbon monoxide:9
	(3)
	(CH3)3C–CO+ ⇄ (CH3)3C+/+/CO
	Table 1 Geometric and IR parameters of aliphatic acyl cationsa
	Source (Method)
	ν(CO)/cm−1
	α/deg
	b/Å
	a/Å
	X−
	Cation
	a Reliable data used for the discussion are given in bold.
	This work (A)
	SbF6−
	Me–C/O+
	Ref. 5
	2294Ref. 3
	177
	1.39
	1.11
	This work (A)
	GaCl4−
	Et–C/O+
	Ref. 8b
	—
	177
	1.43
	1.07
	Ref. 2
	2257 Ref. 2
	SbCl6−
	i-Pr–C/O+
	Ref. 8b
	—
	176
	1.44
	1.12
	The ORTEP diagram of the ethyl derivative Et–CO+GaCl4− in Fig. 1(A) shows the linear coordination of CO in the basic 3 atom fragment Cα–C–O; and the (distorted) tetragonal disposition of chlorine from three GaCl4− anions about the cationic center (rC⋯Cl3.28–3.48 Å) is identified by the unit-cell fragment in Fig. 1(B).10Table 1 also includes the carbonyl stretching frequencies (last column) obtained from IR reflectance measurements on crystalline oxocarbonium salts (see Experimental).
	Fig. 1 (A) ORTEP diagram (50% probability ellipsoids) of Et–CO+ showing the linear coordination of carbon monoxide. (B) Unit cell fragment showing the distorted tetragonal coordination of three GaCl4− about the cationic center.
	B. Aromatic aroyl cations. Since our initial attempts to obtain single crystals of benzoylium salts with various counteranions suffered badly from low solubilities, we re-determined the structure of the methyl derivative p-CH3C6H4–CO+SbCl6− at −150 °C with superior resolution to that earlier reported by Le Carpentier, Weiss et al.4 In addition, the structural parameters are reported inTable 2 for the 2,4,6-trimethyl (Mes) and 2,3,4,5,6-pentamethyl (Me5C6) derivatives together with those of the p-fluoro- and p-methoxy-substituted analogs.
	Table 2 Geometric and IR parametersa of the aromatic aroyl cations
	ν(CO)/cm−1
	e/Å
	d/Å
	c/Å
	α/deg
	b/Å
	a/Å
	Cation-anion pair (method)
	a Reliable data used for discussion are given in bold; the actual precision of geometric parameters for Mes–C/O+SbCl6−, p-MeOC6H4–C/O+SbF6− and p-FC6H4–C/O+SbF6− is higher because these are averaged over two symmetrically independent molecules. b For the corresponding SbF6 salt.
	2220 b
	p-MeC6H4–C/O+ SbCl6− (A)
	—
	1.39(1)Ref. 8
	1.36(1)Ref. 4
	1.40(1)Ref. 4
	179(1)Ref. 4
	1.40(1)Ref. 4
	1.10(1)Ref. 4
	2203 b
	Mes–C/O + SbCl6− (A)
	1.42(2)
	1.39(1)
	1.42(1)
	178(1)
	1.39(1)
	1.11(1)
	Me5C6–C/O+ SbF6− (B)
	p-MeOC6H4–C/O+ SbF6− (B)
	p-FC6H4–C/O+ SbF6− (B)
	The structures of the p-methyl and 2,4,6-trimethylbenzoyl cations as well as the fluoro-substituted derivative were established to good experimental precision, whereas the permethylated and methoxy structures were affected by crystallographic disorder. The problem is especially pernicious in the case of the permethylated cation in which a small fraction (less than 10%) of the disk-shaped cations has the methyl and carbonyl groups permuted. This disorder compromised the reliability of the structural parameters owing to the (effective) shift of the carbonyl carbon toward the oxygen and away from the benzene ring. Nevertheless, the crystallographic data in Table 2 provide sufficient structural information to discuss the principal structural and electronic features of aromatic aroyl carbocations.
	Fig. 2 (A) ORTEP diagram (50% probability ellipsoids) of the p-fluorobezoyl cation showing the linear coordination of carbon monoxide. (B) Tetragonal coordination of SbF6− anions about the cationic center.
	The ORTEP diagram in Fig. 2(A) of the fluorobenzoyl moiety in p-FC6H4–CO+ SbF6− is a typical representation of the basic 3 atom fragment Cα–C–O showing the linear coordination of CO to the aromatic (substituent) group; and Fig. 2(B) emphasizes the tetragonal disposition of SbF6− anions (rC⋯F 2.69–2.94 Å) about the cationic carbon center.10
	Discussion
	I. Sigma binding of carbon monoxide in aliphatic acyl cations
	II. Pi binding of carbon monoxide in aromatic aroyl cations

	The nature of the alkyl coordination in the series of acyl cations (Table 1) is revealed in the variation of two structural parameters: (i) the carbonyl bond length (rCO) and (ii) the bonding distance to the alkyl group (rCα). As expected for a linear 3-center array, the variation of rCO runs counter to that in rCα, that is, the general trends in rCO and rCα are opposed.11 Furthermore, the correlation of the carbonyl bond length rCO with the carbonyl stretching frequency νCO has a qualitative trend12 which is opposite to expectations of the well-recognized bond-strength/bond-order interrelationship.11 Therefore, let us now normalize the structural parameters (ri) to the bond orders (ni) as described by Pauling.13
	In Table 3,13 the calculated carbonyl bond order encompasses a rather narrow range centered around nCO = 2.72, whereas the alpha bond to the alkyl substituent is significantly more variant around nCα = 1.22. It is thus interesting to note that the total bond order (∑n) is rather close to 4 (required by the simple octet rule) with one exception, that is, ∑n for the isopropyl derivative is clearly less than 4.14–19 In other words, the Pauling approach alone does not adequately account for the electronic effects of the isopropyl group relative to those of either methyl or ethyl.
	Table 3 Pauling bond orders for aliphatic acyl cations
	∑n
	n Cα
	n CO
	Alkyl–CO+
	4.01(4)
	1.32(2)
	2.69(3)
	Me–CO+
	4.03(6)
	1.29(4)
	2.74(4)
	Et–CO+
	3.86(4)
	1.11(2)
	2.75(3)
	i-Pr–CO+
	The inspection of Table 3 reveals that the bond order nCα for isopropyl is unusually low and largely responsible for (a) the total bond order ∑n less than 4, and (b) the strong non-linear deviation of rCα. Since the Pauling paradigm of bond order in Table 3 is mainly focussed on the variation of the π component,14c the shortening of rCO in the isopropyl derivative is not adequately compensated in the (excess) lengthening of rCα. The discrepancy is seen in Table 3 for isopropyl with ∑n substantially less than 4, and this indicates that the π component alone is not sufficient to satisfy the octet requirement.14d Since earlier physical-organic studies20 indicated that the σ-donor property of the isopropyl group is enhanced relative to that of either methyl or ethyl, we suggest that the electron deficit (of ∼0.3 e) is compensated by an inductive effect operating through the σ bond.14d Such a σ-inductive effect also accounts for the inverse order in the carbonyl stretching frequencies,13,21 and is in complete accord with the previous conclusions about the bonding in “nonclassical” metal carbonyls.2
	In the substituent effect on the series of aroyl structures presented in Table 2, the general trend of the carbonyl bond length (rCO) is opposed to the trend for aryl separation from CO (rCα) which is consistent with the expectations of such compensating changes in bond lengths for the linear Cα–C–O unit. However, both are opposite to the trends in rCO and rCα for the aliphatic acyl cationsas presented in Table 1. Most revealingly, the trend in the bond correlation for the aroyl cations is also opposed to that for acylcations.12 Indeed, the inverse slope is the one expected for the Pauling analysis based on predominant π conjugation, and it is in accord with the π backbonding generally observed in transition metal carbonyls.
	In aromatic aroyl cations, the electronically unsaturated (cationic) center adopts the linear sp-hybridized configuration as shown by all α values in Table 2 very close to 180°. Most importantly, the carbonyl bonds (rCO) are 1–2 pm longer than those in the aliphatic acyl cations owing to π conjugation with the aromatic substituent; and this elongation is consistent with the reduced IR stretching frequency of the carbonyl group by ΔνCO = 30–100 cm−1. Specifically in the p-methylbenzoyl cation, π conjugation achieves almost 100% efficiency as follows from the α bond length of rCα = 1.391 Å, which coincides with the standard value of 1.39 Å for the aromatic conjugated carbon–carbon π bond.16 Such a conjugation is accompanied by an elongation of the carbonylbond by ΔrCO = 0.7–1.3 pm relative to that observed in the aliphatic acyl cations, as well as a significant quinonoidal distortion of the benzenoid ring.22 As expected, the presence of two additional methyl groups as in the mesitoyl cation further increases π conjugation by the bond length changes of ΔrCO = 0.6 pm and ΔrCα = 1.6 pm, together with further quinonoidal distortion.23 The introduction of the strong π-donor substituent as in the anisoyl cation promotes the development of π conjugation since the Ar–CO bond of rCα = 1.125 Å is the longest and the quinonoidal distortion is the greatest. Remarkably, this structural change in MeOC6H4CO+ is not reflected in the decreased νCO = 2215 cm−1, and results in its poor correlation.24 At the other extreme, the introduction of fluorine as an electron-acceptor substituent in p-FC6H4CO+ results in the least π-conjugated carbocationic center with the shortest rCα = 1.112 Å (and with an increased stretching frequency of νCO = 2226 cm−1.25 The computation of the Pauling bond order in Table 426 shows that π conjugation is sufficient to complete the octet requirement with ∑n clearly equal to 4.0 for all the aromatic aroyl cations in contrast to the values of ∑n for the acyl cations listed in Table 3.
	Table 4 Pauling bond orders for aromatic aroyl cations
	∑n
	n CO
	n Cα
	Ar–CO+
	3.97(2)
	1.34(1)
	2.62(2)
	MeC6H4–CO+
	3.99(4)
	1.41(3)
	2.58(3)
	2,4,6-Me3C6H2–CO+
	3.96(9)
	1.41(6)
	2.55(6)
	p-MeOC6H4–CO+
	3.96(5)
	1.31(3)
	2.65(4)
	p-FC6H4–CO+
	Summary and conclusions
	Highly electrophilic oxocarbonium structures R–CO+ were synthesized from the corresponding acid halides (using strong Lewis acids or silver(I) salts) and isolated as crystalline solids in the presence of low-nucleophilic counteranions such as SbCl6−, SbF6− or GaCl4−. Precise low-temperature X-ray structural data were obtained for the aliphatic carbocations: CH3–C/O+SbF6− and MeCH2–C/O+GaCl4−, which together with the latest literature data7 on Me2CH–C/O+SbCl6− comprise the first reliable series of structural measurements on these important electronically unsaturated species as the key intermediates of Friedel–Crafts reaction. For the aromatic analogs, the structure of p-Me–C6H4–C/O+SbCl6− was re-determined with superior precision and its 2,4,6-trimethyl and 2,3,4,5,6-pentamethyl analogs were studied for the first time. The aromatic series was also extended to an even more electron-donor substituted benzoyl cation such as p-MeO–C6H4–C/O+ as well as electron-poor substituted p-F–C6H4–C/O+. Solid-state IR spectra were measured for the all carbocations investigated.
	For both series of the oxocarbonium structures, the following general structural features are confirmed: (a) significant triple character of the carbonyl bond as follows from its length (1.10–1.11 Å for the aliphatic and 1.11–1.12 Å for the aromatic oxocarbonium structures) and from the enhanced IR stretching frequency (∼2300 cm−1 for the aliphatic and ∼2200 cm−1 for the aromatic series); (b) significant shortening of the adjacent single bond with rCα (up to 1.42 and 1.37 Å, in the aliphatic and the aromatic cations, respectively) due to electronic σ-π hyperconjugation of the aliphatic moiety and π–π conjugation of the aromatic moiety with the electronically deficient carbocationic center; (c) the sp1-hybridized linear configuration of the carbocationic centers characterized by the α angle in Cα–C/O close to 180°.
	In addition, for the aliphatic acyl cations, it was found that the σ–π hyperconjugation is not as strong as it was earlier deduced from less precise data. Nevertheless, hyperconjugation in CH3–C/O+ and MeCH2–C/O+ cations can be qualitatively estimated as 60% of the complete (1-electron benzenoid) conjugation that results in the shortest value of 1.42 Å for this bond type. The effectiveness of the σ–π hyperconjugation is significantly reduced in Me2CH–C/O+, owing to the availability of only a single Cα–H bond. The geometry of the carbonyl group in acyl cations is almost unaffected by hyperconjugation, but shows significant bathochromic shifts in the IR spectra with the number of electron-donor groups at the β carbon center, that is, IR frequency of the carbonyl group decreases in the order: H3C–C/O+ > MeCH2–C/O+ > Me2CH–C/O+, which is opposite to the degree of the hyperconjugation. This somewhat paradoxical spectroscopic behavior can be explained from the linear sp configuration of the carbocationic center in which the σ-bonding orbital of the single bond interacts with the σ-antibonding orbital of the carbonyl group.
	Aromatic aroyl cations show π–π conjugation between the carbocationic center and the adjacent benzene ring, which increases progressively with the aryl donicity. The shortening of the single (conjugated) bond C–C of up to 1.37 Å with corresponding elongation of the triple bond C/O of up to 1.125 Å tracks the decreasing IR (νCO) frequency. Conjugation also has a pronounced quinonoidal effect on the geometry of the benzene ring (which is less than that deduced earlier from less precise data). Interestingly, the electronegative methoxy oxygen has a significant enhancing effect on the IR frequency of the carbonyl group, apparently through the aforementioned σ–σ* inductive mechanism. By contrast, the electron-accepting fluorosubstituent reduces the conjugation of the carbonyl group and raises the IR frequency to the most extreme values in the series.
	Experimental
	Materials
	Synthesis of 2,4,6-trimethylbenzoyl chloride and pentamethylbenzoyl chloride
	Syntheses of alkyl and aryloxocarbonium salts
	Carbonyl stretching frequencies
	X-Ray crystallography†

	The acyl halides (acetyl chloride, acetyl fluoride, propionyl chloride, p-toluyl chloride, p-anisoyl chloride and p-fluorobenzoyl chloride) were from Aldrich. 2,4,6-Mesitoyl chloride and pentamethylbenzoyl chloride were prepared from the corresponding carboxylic acids (Aldrich) by treatment with oxalyl chloride (Aldrich). SbCl5, SbF5 and AgSbF6 from Aldrich were used without additional purification. Dichloromethane, benzene and hexane were purified according to published procedures.29 1,1,2-Trifluorotrichloroethane (Freon 113) from Aldrich was used without additional purification.
	The corresponding 2,4,6-trimethylbenzoic (2 g or 12 mmol) or pentamethylbenzoic acid (10 mmol) were dissolved in 10 ml ofbenzene and a large excess (5 times) of oxalyl chloride was introduced (7.7 and 6.6 g, respectively) under stirring. The mixture was stirred under an argon atmosphere for 3 h. The solvent and the residual oxalyl chloride were removed under vacuum, and the remainder of the solution was distilled under reduced pressure (b.p. 121 and 140 °C at 20 mm Hg, respectively; yield 50–55%).
	The oxocarbonium salts were prepared using literature methods involving two general synthetic procedures described as methods (A) and (B) in eqns. (1) and (2). Method (A) was used for acyl and aroyl halides with either X = F and PF5, BF3, SbF5, AsF5 or X = Cl and AlCl3, GaCl3, SbF5. Method B was used for acyl and aroyl chlorides and silver(I) PF6−, BF4−, SbF6−, AsF6−. It is important to mention that the target oxocarbonium salts are extremely sensitive to air. Their successful isolation required highly pure reagents and extreme precautions against moisture. The acid halides were always freshly distilled and anhydrous silver salts were carefully dried in vacuo (including cautious heating) prior to synthesis. The solvents were additionally passed through a column containing activated molecular sieves immediately prior to use. Generally, it is highly recommended to carry out all sample manipulations under an argon atmosphere in a rigorously water and air-free drybox.
	Methyloxocarbonium hexachloroantimonate (method A). Freshly distilled acetyl chloride (0.785 g, 10 mmol) was dissolved in 10 ml of dry dichloromethane under an argon atmosphere, and the solution was cooled to 0 °C. Under careful stirring, a solution of 5.98 g of SbCl5 (20 mmol) in 10 ml of dry dichloromethane was introduced. After 15 min of the continuous stirring, a white crystalline precipitate was collected, washed with cold CH2Cl2 and dried under vacuum. Single crystals suitable for X-ray analysis were obtained by slow cooling of the dry dichloromethane solution initially saturated at 40 °C.
	Acetyl hexafluoroantimonate (method A). Freshly distilled acetyl fluoride (0.62 g, 10 mmol) was dissolved in 10 ml of Freon 113 under an argon atmosphere, and the solution was cooled to −20 °C. An equimolar amount of SbF5 (2.17 g) was introduced with careful stirring. After 15 min of continuous stirring, a white crystalline precipitate was collected, washed with cold Freon and dried under vacuum. Single crystals suitable for X-ray analysis were obtained by slow evaporation of the Freon solution under an argon atmosphere.
	Propionyl tetrachlorogallate (method A). Freshly distilled propionyl chloride (0.185 g, 2 mmol) was dissolved in 10 ml of drydichloromethane under an argon atmosphere. 0.352 g of GaCl3 (2 mmol) was added into the stirred solution which was then cooled to −40 °C. A white crystalline precipitate was collected, washed out with cold CH2Cl2 and dried under vacuum. Single crystals suitable for X-ray analysis were obtained by slow evaporation (2 h) of the dichloromethane solution.
	4-Toluoyl hexachloroantimonate (method A). Freshly distilled p-toluyl chloride (0.46 g, 3 mmol) was dissolved in 15 ml of drydichloromethane under an argon atmosphere. Under careful stirring, 5 ml of dichloromethane solution containing 0.89 g (3 mmol) of SbCl5 were introduced. The solution was covered with a layer of dry n-hexane (15 ml) and allowed to stand at −40 °C. Well-formed crystals of the target oxocarbonium salt were collected at the solvent interface after 3 days.
	2,4,6-Mesitoyl hexachloroantimonate (method A). Freshly prepared 2,4,6-trimethylbenzoyl chloride (90 mg, 0.5 mmol) were dissolved in 7 ml of dry dichloromethane under an argon atmosphere. Under careful stirring, 5 ml of dichloromethane solution containing 0.14 g (0.5 mmol) of SbCl5 were introduced. The solution was covered with a layer of dry n-hexane (15 ml) and allowed to stand at −40 °C. Well-formed crystals of the target oxocarbonium salt were collected at the solvent interface after 2 days.
	Syntheses of pentamethylbenzoyl, 4-methoxybenzoyl, and 4-fluorobenzoyl hexafluoroantimonates (method B). Anhydrous silver(I) salt AgSbF6 (0.24 g, 0.7 mmol) were dissolved in 15 ml of dry dichloromethane. An equimolar amount of the corresponding aroyl halide (0.147, 0.120 and 0.111 g, respectively) was then added under stirring as a solution in a limited amount (∼5 ml) of dry dichloromethane. Stirring was continued for 10 min, then the AgCl precipitate was filtered off. Crystals suitable for X-ray study were obtained by slow evaporation of the filtrate (6–12 h) under an argon atmosphere.
	Crystalline samples of the oxocarbonium salts were mounted directly on the germanium sampling plate of the single-reflection HATR (Smart Miracle, Pike Technology) under an argon atmosphere, and the infrared spectra (Fig. 3) were measured with a Nexus 470 FT-IR (Thermo Nicolet). Alternatively, crystals for X-ray crystallographic analysis suspended in mineral oil were used, and the mineral oil background digitally subtracted. 
	Fig. 3 Reflectance IR spectra (partial) of aroyl and acyl salts in the region of CO stretching vibrations.
	The intensity data for all the compounds were collected with a Siemens/Bruker SMART diffractometer equipped with an APEX CCD detector using MoKα radiation (λ = 0.710 73 Å), at −150 °C. In all cases, a semi-empirical absorption correction was applied.27The structures were solved by direct methods and refined by full matrix least-squares procedure28 with IBM Pentium and SGI O2computers. X-Ray structure details of the various salts are compiled in Table 5 .
	Table 5 Crystallographic parameters and the details of the structure refinements
	p-FC6H4CO+SbF6−
	p-MeOC6H4CO+SbF6−
	Me5C6CO+SbF6−·CH2Cl2
	MesCO+ SbCl6−
	p-TolCO+SbCl6−
	EtCO+GaCl4−
	MeCO+SbF6−
	Compound
	C7H4F7OSb
	C8H7F6O2Sb
	C13H17Cl2F6OSb
	C10H11Cl6OSb
	C8H7Cl6OSb
	C3H5Cl4GaO
	C2H3F6OSb
	Formula
	358.85
	370.89
	495.92
	481.64
	453.59
	268.59
	278.79
	P21/n
	C2/c
	P21/c
	P21/c
	P21/c
	P21/c
	P21/m
	Space group
	12.586(1)
	19.061(1)
	7.6218(6)
	9.2849(5)
	11.7482(7)
	7.146(1)
	5.7299(7)
	a/Å
	12.396(1)
	10.4108(8)
	12.7753(9)
	25.038(1)
	10.2038(6)
	9.487(2)
	7.7373(9)
	b/Å
	13.079(1)
	28.690(2)
	18.242(1)
	14.9209(7)
	12.4473(8)
	13.931(2)
	7.7479(9)
	c/Å
	92.252(2)
	91.537(2)
	90.641(1)
	104.665(1)
	93.428(1)
	97.909(4)
	100.187(2)
	β/°
	2038.9(4)
	5691.2(8)
	1776.2(2)
	3355.8(3)
	1489.5(2)
	935.4(3)
	338.08(7)
	U/Å3
	8
	20
	4
	8
	4
	4
	2
	2.338
	2.164
	1.855
	1.907
	2.023
	1.907
	2.739
	Dc/g cm−3
	22251
	31114
	19127
	36634
	15992
	8621
	3629
	Nref (collected)
	0.0461
	0.0342
	0.0212
	0.0219
	0.0218
	0.0485
	0.0254
	Rint
	6591
	9116
	5693
	10746
	4714
	3008
	1150
	Nref (indep.)
	4157
	7508
	5180
	9254
	4366
	1829
	1108
	Nref [I > 2σ(I)]
	0.0437
	0.0661
	0.0295
	0.0276
	0.0202
	0.0454
	0.0201
	R1
	0.0914
	0.1626
	0.0723
	0.0630
	0.0496
	0.0942
	0.0502
	wR2
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