1,340 research outputs found

    Statistical Uncertainty in Quantitative Neutron Radiography

    Full text link
    We demonstrate a novel procedure to calibrate neutron detection systems commonly used in standard neutron radiography. This calibration allows determining the uncertainties due to Poisson-like neutron counting statistics for each individual pixel of a radiographic image. The obtained statistical errors are necessary in order to perform a correct quantitative analysis. This fast and convenient method is applied to data measured at the cold neutron radiography facility ICON at the Paul Scherrer Institute. Moreover, from the results the effective neutron flux at the beam line is determined

    Inequalities for nucleon generalized parton distributions with helicity flip

    Full text link
    Several positivity bounds are derived for generalized parton distributions (GPDs) with helicity flip.Comment: 20 page

    Compact 20-pass thin-disk amplifier insensitive to thermal lensing

    Full text link
    We present a multi-pass amplifier which passively compensates for distortions of the spherical phase front occurring in the active medium. The design is based on the Fourier transform propagation which makes the output beam parameters insensitive to variation of thermal lens effects in the active medium. The realized system allows for 20 reflections on the active medium and delivers a small signal gain of 30 with M2^2 = 1.16. Its novel geometry combining Fourier transform propagations with 4f-imaging stages as well as a compact array of adjustable mirrors allows for a layout with a footprint of 400 mm x 1000 mm.Comment: 7 pages, 6 figure

    Fitting Time Series Models to Fisheries Data to Ascertain Age

    Get PDF
    The ability of government agencies to assign accurate ages of fish is important to fisheries management. Accurate ageing allows for most reliable age-based models to be used to support sustainability and maximize economic benefit. Assigning age relies on validating putative annual marks by evaluating accretional material laid down in patterns in fish ear bones, typically by marginal increment analysis. These patterns often take the shape of a sawtooth wave with an abrupt drop in accretion yearly to form an annual band and are typically validated qualitatively. Researchers have shown key interest in modeling marginal increments to verify the marks do, in fact, occur yearly. However, it has been challenging in finding the best model to predict this sawtooth wave pattern. We propose three new applications of time series models to validate the existence of the yearly sawtooth wave patterned data: autoregressive integrated moving average (ARIMA), unobserved component, and copula. These methods are expected to enable the identification of yearly patterns in accretion. ARIMA and unobserved components account for the dependence of observations and error, while copula incorporates a variety of marginal distributions and dependence structures. The unobserved component model produced the best results (AIC: -123.7, MSE 0.00626), followed by the time series model (AIC: -117.292, MSE: 0.0081), and then the copula model (AIC: -96.62, Kendall\u27s tau: -0.5503). The unobserved component model performed best due to the completeness of the dataset. In conclusion, all three models are effective tools to validate yearly accretional patterns in fish ear bones despite their differences in constraints and assumptions

    Experimental study of 199Hg spin anti-relaxation coatings

    Full text link
    We report on a comparison of spin relaxation rates in a 199^{199}Hg magnetometer using different wall coatings. A compact mercury magnetometer was built for this purpose. Glass cells coated with fluorinated materials show longer spin coherence times than if coated with their hydrogenated homologues. The longest spin relaxation time of the mercury vapor was measured with a fluorinated paraffin wall coating.Comment: 9 pages, 6 figures, submitted to JINS
    corecore