1,340 research outputs found
Statistical Uncertainty in Quantitative Neutron Radiography
We demonstrate a novel procedure to calibrate neutron detection systems
commonly used in standard neutron radiography. This calibration allows
determining the uncertainties due to Poisson-like neutron counting statistics
for each individual pixel of a radiographic image. The obtained statistical
errors are necessary in order to perform a correct quantitative analysis. This
fast and convenient method is applied to data measured at the cold neutron
radiography facility ICON at the Paul Scherrer Institute. Moreover, from the
results the effective neutron flux at the beam line is determined
Inequalities for nucleon generalized parton distributions with helicity flip
Several positivity bounds are derived for generalized parton distributions
(GPDs) with helicity flip.Comment: 20 page
Compact 20-pass thin-disk amplifier insensitive to thermal lensing
We present a multi-pass amplifier which passively compensates for distortions
of the spherical phase front occurring in the active medium. The design is
based on the Fourier transform propagation which makes the output beam
parameters insensitive to variation of thermal lens effects in the active
medium. The realized system allows for 20 reflections on the active medium and
delivers a small signal gain of 30 with M = 1.16. Its novel geometry
combining Fourier transform propagations with 4f-imaging stages as well as a
compact array of adjustable mirrors allows for a layout with a footprint of 400
mm x 1000 mm.Comment: 7 pages, 6 figure
Fitting Time Series Models to Fisheries Data to Ascertain Age
The ability of government agencies to assign accurate ages of fish is important to fisheries management. Accurate ageing allows for most reliable age-based models to be used to support sustainability and maximize economic benefit. Assigning age relies on validating putative annual marks by evaluating accretional material laid down in patterns in fish ear bones, typically by marginal increment analysis. These patterns often take the shape of a sawtooth wave with an abrupt drop in accretion yearly to form an annual band and are typically validated qualitatively. Researchers have shown key interest in modeling marginal increments to verify the marks do, in fact, occur yearly. However, it has been challenging in finding the best model to predict this sawtooth wave pattern. We propose three new applications of time series models to validate the existence of the yearly sawtooth wave patterned data: autoregressive integrated moving average (ARIMA), unobserved component, and copula. These methods are expected to enable the identification of yearly patterns in accretion. ARIMA and unobserved components account for the dependence of observations and error, while copula incorporates a variety of marginal distributions and dependence structures. The unobserved component model produced the best results (AIC: -123.7, MSE 0.00626), followed by the time series model (AIC: -117.292, MSE: 0.0081), and then the copula model (AIC: -96.62, Kendall\u27s tau: -0.5503). The unobserved component model performed best due to the completeness of the dataset. In conclusion, all three models are effective tools to validate yearly accretional patterns in fish ear bones despite their differences in constraints and assumptions
Experimental study of 199Hg spin anti-relaxation coatings
We report on a comparison of spin relaxation rates in a Hg
magnetometer using different wall coatings. A compact mercury magnetometer was
built for this purpose. Glass cells coated with fluorinated materials show
longer spin coherence times than if coated with their hydrogenated homologues.
The longest spin relaxation time of the mercury vapor was measured with a
fluorinated paraffin wall coating.Comment: 9 pages, 6 figures, submitted to JINS
- …