2,292 research outputs found

    A Brain-Based Approach To Educational Pedagogy

    Get PDF
    Students with Autism Spectrum Disorder (ASD) are underperforming their peers on state assessments. The purpose of this practical action research study is to explore how professional development, focused on brain-based research, informs educators’ pedagogical design for students with Autism Spectrum Disorder (ASD). By combining brain-based teaching components, background in the neurology of the brain, and various learning theories, educators were provided filters for making educational decisions. Research was conducted at a rural elementary school in New Hampshire that serves 258 students in grades 3–5, with 51 students served through special education services. The researcher provided teachers and paraprofessionals with preintervention surveys, professional development training, coaching, and post-intervention interviews. The findings of the study concluded there were five themes that influence the use of brain-based teaching: Domain knowledge of staff influences applicability of material and skills; Consideration and strategy-based trainings are preferred; Staff need to process with groups and apply created strategies in the moment; Similar experience aids comfort level toward application; Educators need guidance in classroom management and instructional sequence design. The recommendations of the study show the need for schools to employ action research on the same topic within a larger setting and across grade level groupings; and extend the focus of the action research within the same institution addressing other disability similarities resulting in more common data

    Constraining Radiatively Inefficient Accretion Flows with Polarization

    Full text link
    The low-luminosity black hole Sgr A* provides a testbed for models of Radiatively Inefficient Accretion Flows (RIAFs). Recent sub-millimeter linear polarization measurements of Sgr A* have provided evidence that the electrons in the accretion flow are relativistic over a large range of radii. Here, we show that these high temperatures result in elliptical plasma normal modes. Thus, polarized millimeter and sub-millimeter radiation emitted within RIAFs will undergo generalized Faraday rotation, a cyclic conversion between linear and circular polarization. This effect will not depolarize the radiation even if the rotation measure is extremely high. Rather, the beam will take on the linear and circular polarization properties of the plasma normal modes. As a result, polarization measurements of Sgr A* in this frequency regime will constrain the temperature, density and magnetic profiles of RIAF models.Comment: 4 pages, 3 figures, accepted by ApJ Letter

    Generation of circular polarization of the CMB

    Full text link
    According to the standard cosmology, near the last scattering surface, the photons scattered via Compton scattering are just linearly polarized and then the primordial circular polarization of the CMB photons is zero. In this work we show that CMB polarization acquires a small degree of circular polarization when a background magnetic field is considered or the quantum electrodynamic sector of standard model is extended by Lorentz-noninvariant operators as well as noncommutativity. The existence of circular polarization for the CMB radiation may be verified during future observation programs and it represents a possible new channel for investigating new physics effects.Comment: 28 pages, v3, Phys. Rev. D 81, 084035 (2010

    Precision Search for Magnetic Order in the Pseudogap Regime of La2-xSrxCuO4 by Muon Spin Relaxation

    Full text link
    We report a high precision search for orbital-like magnetic order in the pseudogap region of La2-xSrxCuO4 single crystals using zero-field muon spin relaxation (ZF-muSR). In contrast to previous studies of this kind, the effects of the dipolar and quadrupolar interactions of the muon with nearby nuclei are calculated. ZF-muSR spectra with a high number of counts were also recorded to determine whether a magnetically ordered phase exists in dilute regions of the sample. Despite these efforts, we find no evidence for static magnetic order of any kind in the pseudogap region above the hole-doping concentration p = 0.13.Comment: 8 pages, 7 figure

    New ant in the big city: Known natural history of Lasius cf. emarginatus in its native range and potential impacts of recent US introduction

    Get PDF
    New York City has been the site of introduction for some of North America’s most damaging invasive pests, from chestnut blight to the Asian long-horned beetle. Despite these cautionary examples, there has been no formal tracking of a newly introduced ant species, Lasius cf. emarginatus, which has quickly become among the most common species in the city. Sometime between the first ant diversity survey of New York City in 2006 and the second in 2011,L. cf. emarginatus was introduced and quickly became established in the most urban habitats with the highest human contact. In contrast to other urban exploiting ant species, L. cf. emarginatus does not appear to be feeding on human food waste. Instead, we hypothesized that L. cf. emarginatus may be exploiting a novel urban niche space by feeding on homopeteran-produced honeydew in the canopies of urban street trees left vacant by native species that cannot tolerate urban conditions. Here I will compile the known natural history of L. cf. emarginatus in its native range and what we know so far about this species in the United States. I will also outline the potential impacts of this L. cf. emarginatus’ introduction and present methods that will be used to study this species’ diet and survival in a highly urban habitat

    The Variability of Polarized Radiation from Sgr A*

    Full text link
    Sgr A* is variable at radio and submillimeter wavelengths on hourly time scales showing time delays between the peaks of flare emission as well as linearly polarized emission at millimeter and sub-mm wavelengths. To determine the polarization characteristics of this variable source at radio frequencies, we present VLA observations of Sgr A* and report the detection of polarized emission at a level of 0.77\pm0.01% and 0.2\pm0.01% at 43 and 22 GHz, respectively. The change in the time averaged polarization angle between 22 and 43 GHz corresponds to a RM of -2.5\pm0.6 x10^3 rad m{-2} with no phase wrapping (or \sim 5x10^4 rad m^2 with 2\pi phase wrap). We also note a rise and fall time scale of 1.5 -- 2 hours in the total polarized intensity. The light curves of the degree of linearly polarized emission suggests a a correlation with the variability of the total intensity at 43 GHz. The available polarization data at radio and sub-mm wavelengths suggest that the rotation measure decreases with decreasing frequency. This frequency dependence, and observed changes in polarization angle during flare events, may be caused by the reduction in rotation measure associated with the expansion of synchrotron-emitting blobs.Comment: 11 pages, 3 figures, ApJL (in press

    History of oceanic front development in the New Zealand sector of the Southern Ocean during the Cenozoic--a synthesis

    Get PDF
    The New Zealand sector of the Southern Ocean (NZSSO) has opened about the Indian-Pacific spreading ridge throughout the Cenozoic. Today the NZSSO is characterised by broad zonal belts of antarctic (cold), subantarctic (cool), and subtropical (warm) surface-water masses separated by prominent oceanic fronts: the Subtropical Front (STF) c. 43deg.S, Subantarctic Front (SAF) c. 50deg.S, and Antarctic Polar Front (AAPF) c. 60deg.S. Despite a meagre database, the broad pattern of Cenozoic evolution of these fronts is reviewed from the results of Deep Sea Drilling Project-based studies of sediment facies, microfossil assemblages and diversity, and stable isotope records, as well as from evidence in onland New Zealand Cenozoic sequences. Results are depicted schematically on seven paleogeographic maps covering the NZSSO at 10 m.y. intervals through the Cenozoic. During the Paleocene and most of the Eocene (65-35 Ma), the entire NZSSO was under the influence of warm to cool subtropical waters, with no detectable oceanic fronts. In the latest Eocene (c. 35 Ma), a proto-STF is shown separating subantarctic and subtropical waters offshore from Antarctica, near 65deg.S paleolatitude. During the earliest Oligocene, this front was displaced northwards by development of an AAPF following major global cooling and biotic turnover associated with ice sheet expansion to sea level on East Antarctica. Early Oligocene full opening (c. 31 Ma) of the Tasmanian gateway initiated vigorous proto-circum-Antarctic flow of cold/cool waters, possibly through a West Antarctic seaway linking the southern Pacific and Atlantic Oceans, including detached northwards "jetting" onto the New Zealand plateau where condensation and unconformity development was widespread in cool-water carbonate facies. Since this time, a broad tripartite division of antarctic, subantarctic, and subtropical waters has existed in the NZSSO, including possible development of a proto-SAF within the subantarctic belt. In the Early-early Middle Miocene (25-15 Ma), warm subtropical waters expanded southwards into the northern NZSSO, possibly associated with reduced ice volume on East Antarctica but particularly with restriction of the Indonesian gateway and redirection of intensified warm surface flows southwards into the Tasman Sea, as well as complete opening of the Drake gateway by 23 Ma allowing more complete decoupling of cool circum-Antarctic flow from the subtropical waters. During the late Middle-Late Miocene (15-5 Ma), both the STF and SAF proper were established in their present relative positions across and about the Campbell Plateau, respectively, accompanying renewed ice buildup on East Antarctica and formation of a permanent ice sheet on West Antarctica, as well as generally more expansive and intensified circum-Antarctic flow. The ultimate control on the history of oceanic front development in the NZSSO has been plate tectonics through its influence on the paleogeographic changes of the Australian-New Zealand-Antarctic continents and their intervening oceanic basins, the timing of opening and closing of critical seaways, the potential for submarine ridges and plateaus to exert some bathymetric control on the location of fronts, and the evolving ice budget on the Antarctic continent. The broad trends of the Cenozoic climate curve for New Zealand deduced from fossil evidence in the uplifted marine sedimentary record correspond well to the principal paleoceanographic events controlling the evolution and migration of the oceanic fronts in the NZSSO

    Tuning the effects of Landau-level mixing on anisotropic transport in quantum Hall systems

    Full text link
    Electron-electron interactions in half-filled high Landau levels in two-dimensional electron gases in a strong perpendicular magnetic field can lead to states with anisotropic longitudinal resistance. This longitudinal resitance is generally believed to arise from broken rotational invariance, which is indicated by charge density wave (CDW) order in Hartree-Fock calculations. We use the Hartree-Fock approximation to study the influence of externally tuned Landau level mixing on the formation of interaction induced states that break rotational invariance in two-dimensional electron and hole systems. We focus on the situation when there are two non-interacting states in the vicinity of the Fermi level and construct a Landau theory to study coupled charge density wave order that can occur as interactions are tuned and the filling or mixing are varied. We examine in detail a specific example where mixing is tuned externally through Rashba spin-orbit coupling. We calculate the phase diagram and find the possibility of ordering involving coupled striped or triangular charge density waves in the two levels. Our results may be relevant to recent transport experiments on quantum Hall nematics in which Landau-level mixing plays an important role.Comment: 25 pages, 6 figure
    corecore