392 research outputs found
Bremsstrahlung Spectrum in alpha Decay
Using our previous approach to electromagnetic emission during tunneling, an
explicit, essentially classical, formula describing the bremsstrahlung spectrum
in alpha decay is derived. The role of tunneling motion in photon emission is
discussed. The shape of the spectrum is a universal function of the ratio Eg/Eo
, where Eg is the photon energy and Eo is a characteristic energy depending
only on the nuclear charge and the energy of the alpha particle.Comment: 8 pages, 3 figure
Li+D Reaction in Pd and Au for 30<E_d<75 keV(I. Nuclear Physics)
Thick target yields of α particles emitted in the ^Li (d, α) ^He reactions in PdLi_x and AuLi_x were measured as a function of the bombarding energy between 30 and 75 keV. It was found that the reaction rate in Pd at lower energies is enhanced strongly over the one predicted by the cross section for the reaction with bare nuclei, but no enhancement is observed in Au. A screening energy is introduced to reproduce the excitation function of the thick target yield for each metal. The deduced value for Pd amounts to 1500±310 eV, whereas it is only 60±150 eV for Au. The enhancement in the Pd case cannot be explained by electron screening alone but suggests the existence of an additional and important mechanism of screening in metal
Bremsstrahlung in Alpha-Decay
We present the first fully quantum mechanical calculation of photon radiation
accompanying charged particle decay from a barrier resonance. The soft-photon
limit agrees with the classical results, but differences appear at
next-to-leading-order. Under the conditions of alpha-decay of heavy nuclei, the
main contribution to the photon emission stems from Coulomb acceleration and
may be computed analytically. We find only a small contribution from the
tunneling wave function under the barrier.Comment: 12 pages, 2 Postscript figure
Ionizing radiation exposure and the development of soft-tissue sarcomas in atomic-bomb survivors
BACKGROUND: Very high levels of ionizing radiation exposure have been associated with the development of soft-tissue sarcoma. The effects of lower levels of ionizing radiation on sarcoma development are unknown. This study addressed the role of low to moderately high levels of ionizing radiation exposure in the development of soft-tissue sarcoma. METHODS: Based on the Life Span Study cohort of Japanese atomic-bomb survivors, 80,180 individuals were prospectively assessed for the development of primary soft-tissue sarcoma. Colon dose in gray (Gy), the excess relative risk, and the excess absolute rate per Gy absorbed ionizing radiation dose were assessed. Subject demographic, age-specific, and survival parameters were evaluated. RESULTS: One hundred and four soft-tissue sarcomas were identified (mean colon dose = 0.18 Gy), associated with a 39% five-year survival rate. Mean ages at the time of the bombings and sarcoma diagnosis were 26.8 and 63.6 years, respectively. A linear dose-response model with an excess relative risk of 1.01 per Gy (95% confidence interval [CI]: 0.13 to 2.46; p = 0.019) and an excess absolute risk per Gy of 4.3 per 100,000 persons per year (95% CI: 1.1 to 8.9; p = 0.001) were noted in the development of soft-tissue sarcoma. CONCLUSIONS: This is one of the largest and longest studies (fifty-six years from the time of exposure to the time of follow-up) to assess ionizing radiation effects on the development of soft-tissue sarcoma. This is the first study to suggest that lower levels of ionizing radiation may be associated with the development of soft-tissue sarcoma, with exposure of 1 Gy doubling the risk of soft-tissue sarcoma development (linear dose-response). The five-year survival rate of patients with soft-tissue sarcoma in this population was much lower than that reported elsewhere.published_or_final_versio
Radiation correction to astrophysical fusion reactions and the electron screening problem
We discuss the effect of electromagnetic environment on laboratory
measurements of the nuclear fusion reactions of astrophysical interest. The
radiation field is eliminated using the path integral formalism in order to
obtain the influence functional, which we evaluate in the semi-classical
approximation. We show that enhancement of the tunneling probability due to the
radiation correction is extremely small and does not resolve the longstanding
problem that the observed electron screening effect is significantly larger
than theoretical predictions.Comment: 9 pages, 1 eps figure
Bremsstrahlung in Decay
A quantum mechanical analysis of the bremsstrahlung in decay of
Po is performed in close reference to a semiclassical theory. We
clarify the contribution from the tunneling, mixed, outside barrier regions and
from the wall of the inner potential well to the final spectral distribution,
and discuss their interplay. We also comment on the validity of semiclassical
calculations, and the possibility to eliminate the ambiguity in the nuclear
potential between the alpha particle and daughter nucleus using the
bremsstrahlung spectrum.Comment: 6 pages, 3 figures, submitted to PR
Anomalous enhancements of low-energy fusion rates in plasmas: the role of ion momentum distributions and inhomogeneous screening
Non-resonant fusion cross-sections significantly higher than corresponding
theoretical predictions are observed in low-energy experiments with deuterated
matrix target. Models based on thermal effects, electron screening, or
quantum-effect dispersion relations have been proposed to explain these
anomalous results: none of them appears to satisfactory reproduce the
experiments. Velocity distributions are fundamental for the reaction rates and
deviations from the Maxwellian limit could play a central role in explaining
the enhancement. We examine two effects: an increase of the tail of the target
Deuteron momentum distribution due to the Galitskii-Yakimets quantum
uncertainty effect, which broadens the energy-momentum relation; and spatial
fluctuations of the Debye-H\"{u}ckel radius leading to an effective increase of
electron screening. Either effect leads to larger reaction rates especially
large at energies below a few keV, reducing the discrepancy between
observations and theoretical expectations.Comment: 6 pages, 3 figure
Precise measurement on the binding energy of hypertriton from the nuclear emulsion data using analysis with machine learning
6 pags., 3 figs.A machine learning model has been developed to search for events of production and decay of a hypertriton in nuclear emulsion data, which
is used for measuring the binding energy of the hypertriton at the best precision. The developed model employs an established technique
for object detection and is trained with surrogate images generated by Monte Carlo simulations and image transfer techniques. The first
hypertriton event has already been detected with the developed method only with 10−4 of the total emulsion data. It implies that a sufficient
number of hypertriton events will soon be detected for the precise measurement of the hypertriton binding energy
- …