6 research outputs found

    Two-electron exchange interaction between polar molecules and atomic ions – Asymptotic approach

    No full text
    We have described the asymptotic approach for calculation of the two-electron exchange interaction between atomic ion and polar molecule responsible for direct double electron transfer processes. The closed analytic expression for matrix element of exchange interaction has been obtained in the framework of the semiclassical version of the asymptotic theory and point-dipole approximation for description of the polar molecule

    Π—Π°Π΄Π°Ρ‡Π° Ρ‚Ρ€ΡŒΠΎΡ… ΠΊΡƒΠ»ΠΎΠ½Ρ–Π²ΡΡŒΠΊΠΈΡ… Ρ†Π΅Π½Ρ‚Ρ€Ρ–Π² Ρ‚Π° Ρ—Ρ— застосування Π² Ρ‚Π΅ΠΎΡ€Ρ–Ρ— Ρ–ΠΎΠ½-молСкулярних Π·Ρ–Ρ‚ΠΊΠ½Π΅Π½ΡŒ

    No full text
    The asymptotic properties of the solution of quantum-mechanical three Coulomb centers problem eZ1ZZ are studied. Within the framework of the perturbation theory the asymptotic formulas for energies of eZ1ZZ system are obtained at large separation L between interacting fragments. As the applications of obtained results the leading term of the asymptotic of exchange interactions between hydrogen-like molecular ion eZZ with nuclei of different elements are calculated. The total cross sections of charge transfer of a hydrogen molecular ion H2+ or the nuclei of lithium at not very low impact velocities are calculated.Π˜Π·ΡƒΡ‡Π°ΡŽΡ‚ΡΡ асимптотичСскиС свойства Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ квантовомСханичСской Π·Π°Π΄Π°Ρ‡ΠΈ Ρ‚Ρ€Π΅Ρ… кулоновских Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠ² eZ1ZZ. Π’ Ρ€Π°ΠΌΠΊΠ°Ρ… Ρ‚Π΅ΠΎΡ€ΠΈΠΈ Π²ΠΎΠ·ΠΌΡƒΡ‰Π΅Π½ΠΈΠΉ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΎ асимптотичСскиС Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ для энСргий систСмы eZ1ZZ ΠΏΡ€ΠΈ Π±ΠΎΠ»ΡŒΡˆΠΈΡ… расстояниях L ΠΌΠ΅ΠΆΠ΄Ρƒ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΌΠΈ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Π°ΠΌΠΈ. Π’ качСствС примСнСния ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² рассчитан Π³Π»Π°Π²Π½Ρ‹ΠΉ Ρ‡Π»Π΅Π½ асимптотичСского разлоТСния ΠΎΠ±ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ взаимодСйствия Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Ρ… молСкулярного ΠΈΠΎΠ½Π° eZZ с ядрами Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… химичСских элСмСнтов. ВычислСно ΠΏΠΎΠ»Π½Ρ‹Π΅ сСчСния пСрСзарядки ΠΈΠΎΠ½Π° молСкулярного Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π° H2+ ядрах Π°Ρ‚ΠΎΠΌΠ° лития ΠΏΡ€ΠΈ Π½Π΅ ΠΎΡ‡Π΅Π½ΡŒ ΠΌΠ°Π»Ρ‹Ρ… скоростях столкновСния.Π’ΠΈΠ²Ρ‡Π°ΡŽΡ‚ΡŒΡΡ асимптотичні властивості розв’язків ΠΊΠ²Π°Π½Ρ‚ΠΎΠ²ΠΎΠΌΠ΅Ρ…Π°Π½Ρ–Ρ‡Π½ΠΎΡ— Π·Π°Π΄Π°Ρ‡Ρ– Ρ‚Ρ€ΡŒΠΎΡ… ΠΊΡƒΠ»ΠΎΠ½Ρ–Π²ΡΡŒΠΊΠΈΡ… Ρ†Π΅Π½Ρ‚Ρ€Ρ–Π² eZ1ZZ. Π’ Ρ€Π°ΠΌΠΊΠ°Ρ… Ρ‚Π΅ΠΎΡ€Ρ–Ρ— Π·Π±ΡƒΡ€Π΅Π½ΡŒ ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΎ асимптотичні Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈ для Π΅Π½Π΅Ρ€Π³Ρ–ΠΉ систСми eZ1ZZ ΠΏΡ€ΠΈ Π²Π΅Π»ΠΈΠΊΠΈΡ… відстанях L ΠΌΡ–ΠΆ Π²Π·Π°Ρ”ΠΌΠΎΠ΄Ρ–ΡŽΡ‡ΠΈΠΌΠΈ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Π°ΠΌΠΈ. Π’ якості застосування ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΈΡ… Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ–Π² Ρ€ΠΎΠ·Ρ€Π°Ρ…ΠΎΠ²Π°Π½ΠΎ Π³ΠΎΠ»ΠΎΠ²Π½ΠΈΠΉ Ρ‡Π»Π΅Π½ асимптотичного Ρ€ΠΎΠ·ΠΊΠ»Π°Π΄Ρƒ ΠΎΠ±ΠΌΡ–Π½Π½ΠΎΡ— Π²Π·Π°Ρ”ΠΌΠΎΠ΄Ρ–Ρ— Π²ΠΎΠ΄Π½Π΅Π²ΠΎΠΏΠΎΠ΄Ρ–Π±Π½ΠΎΠ³ΠΎ молСкулярного Ρ–ΠΎΠ½Π° eZZ Π· ядрами Ρ€Ρ–Π·Π½ΠΈΡ… Ρ…Ρ–ΠΌΡ–Ρ‡Π½ΠΈΡ… Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ–Π². ΠžΠ±Ρ‡ΠΈΡΠ»Π΅Π½ΠΎ ΠΏΠΎΠ²Π½Ρ– ΠΏΠ΅Ρ€Π΅Ρ€Ρ–Π·ΠΈ пСрСзарядки Ρ–ΠΎΠ½Π° молСкулярного водню Н2+ Π½Π° ядрах Π°Ρ‚ΠΎΠΌΠ° Π»Ρ–Ρ‚Ρ–ΡŽ ΠΏΡ€ΠΈ Π½Π΅ Π΄ΡƒΠΆΠ΅ ΠΌΠ°Π»ΠΈΡ… ΡˆΠ²ΠΈΠ΄ΠΊΠΎΡΡ‚ΡΡ… зіткнСння

    Ba2+ ions adsorption by titanium silicate

    No full text
    This paper is devoted to the adsorption capacity of titanium silicate toward Ba2+ cations. Titanium silicate can be synthesized from titanium production waste by sol-gel synthesis, which is of additional benefit to environmental protection. The determination of the surface area of the adsorbent was performed by the method of low-temperature N2 adsorption-desorption isotherm. The elemental composition of titanium silicate was also investigated by XRF and EDS analysis. The dependence of the adsorption values of Ba2+ on the duration of interaction, the equilibrium concentration of adsorbate, and the acidity of the solution has been investigated. The adsorption theories of Langmuir, Freundlich, and Dubinin-Radushkevich were applied to the equilibrium adsorption of barium ions. The experimentally measured maximal adsorption value of Ba2+ ions is 144 mg/g. Barium is adsorbed onto titanium silicate by the mechanism of physical adsorption, this is indicated by the value of the adsorption energy equal to 0.947 kJ per mole, which was calculated using the D-R equation. This may be useful for researching the possibility of adsorbent regeneration

    ΠœΠ°Ρ‚Ρ€ΠΈΡ‡Π½Ρ– Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚ΠΈ диполь-Π΄ΠΈΠΏΠΎΠ»ΡŒΠ½ΠΎΡ— Π²Π·Π°Ρ”ΠΌΠΎΠ΄Ρ–Ρ— ΠΌΡ–ΠΆ Π΄Π²ΠΎΠΌΠ° Π΄Π²ΠΎΡ€Ρ–Π²Π½Π΅Π²ΠΈΠΌΠΈ Π°Ρ‚ΠΎΠΌΠ°ΠΌΠΈ, Ρ€ΠΎΠ·Ρ‚Π°ΡˆΠΎΠ²Π°Π½ΠΈΠΌΠΈ Π½Π° Π΄ΠΎΠ²Ρ–Π»ΡŒΠ½Ρ–ΠΉ відстані ΠΎΠ΄ΠΈΠ½ Π²Ρ–Π΄ ΠΎΠ΄Π½ΠΎΠ³ΠΎ

    No full text
    Purpose. As a standard model for describing the processes of a resonant transmission of quantum information on arbitrary distances is the system of two identical two-level atoms, one of which is under radiation of the field of real photons. Such a system can serve as a basis for the construction of an element basis of quantum computers. The purpose of this paper is to study the different modes of dynamics of a system of two identical two-level atoms when they interacts with the field of real photons.Methods. In this paper, we propose a general approach to the description of the processes for the transfer of quantum information from one atom-qubit to another on the arbitrary interatomic distances, which includes two types of new physical effects: the attenuation of quantum states and the retardation of the dipole-dipole interaction.Results. The optical properties of a system of two identical two-level atoms in collective (symmetric Ξ¨s and antisymmetric Ξ¨a) Bell states at arbitrary interatomic distances are investigated. The closed analytical expressions for the shifts and widths of the considered collective states are considered, taking into account the retarded dipole-dipole interaction of atoms. In calculation of the radial matrix elements of the dipole-dipole interaction, the wave functions of the model Fues potential are used.Conclusions. A detailed study of the mechanisms of resonant transmission of the excitation energy at arbitrary distances between the two-element atoms has an important practical significance for the physical realization of the logical operator CNOT.ИсслСдовано оптичСскиС свойства систСмы ΠΈΠ· Π΄Π²ΡƒΡ… ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Ρ… Π΄Π²ΡƒΡ…ΡƒΡ€ΠΎΠ²Π½Π΅Π²Ρ‹Ρ… Π°Ρ‚ΠΎΠΌΠΎΠ² Π² ΠΊΠΎΠ»Π»Π΅ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… (симмСтричном Ξ¨s ΠΈ антисиммСтричного Ξ¨a) бСлловских состояниях ΠΏΡ€ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½Ρ‹Ρ… ΠΌΠ΅ΠΆΠ°Ρ‚ΠΎΠΌΠ½Ρ‹Ρ… расстояниях. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ Π·Π°ΠΌΠΊΠ½ΡƒΡ‚Ρ‹Π΅ аналитичСскиС выраТСния для сдвигов ΠΈ ΡˆΠΈΡ€ΠΈΠ½ рассматриваСмых ΠΊΠΎΠ»Π»Π΅ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… состояний с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ Π·Π°ΠΏΠΈΠ·Π½ΡŽΡŽΡ‡Π΅ΠΈ диполь-дипольного взаимодСйствия Π°Ρ‚ΠΎΠΌΠΎΠ². ΠŸΡ€ΠΈ исчислСнии Ρ€Π°Π΄ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½Ρ‹ΠΉ элСмСнтов диполь-дипольного взаимодСйствия ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ Π²ΠΎΠ»Π½ΠΎΠ²Ρ‹Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ модСльного ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»Π° Ѐьюса.ДослідТСно ΠΎΠΏΡ‚ΠΈΡ‡Π½Ρ– властивості систСми Π· Π΄Π²ΠΎΡ… ΠΎΠ΄Π½Π°ΠΊΠΎΠ²ΠΈΡ… Π΄Π²ΠΎΡ€Ρ–Π²Π½Π΅Π²ΠΈΡ… Π°Ρ‚ΠΎΠΌΡ–Π² Ρƒ ΠΊΠΎΠ»Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΈΡ… (симСтричному Ξ¨s Ρ– антисимСтричному Ξ¨a) Π±Π΅Π»Π»Ρ–Π²ΡΡŒΠΊΠΈΡ… станах ΠΏΡ€ΠΈ Π΄ΠΎΠ²Ρ–Π»ΡŒΠ½ΠΈΡ… ΠΌΡ–ΠΆΠ°Ρ‚ΠΎΠΌΠ½ΠΈΡ… відстанях. ΠžΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΎ Π·Π°ΠΌΠΊΠ½ΡƒΡ‚Ρ– Π°Π½Π°Π»Ρ–Ρ‚ΠΈΡ‡Π½Ρ– Π²ΠΈΡ€Π°Π·ΠΈ для зсувів Ρ– ΡˆΠΈΡ€ΠΈΠ½ розглядуваних ΠΊΠΎΠ»Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΈΡ… станів Π· урахуванням Π·Π°ΠΏΡ–Π·Π½ΡŽΡŽΡ‡ΠΎΡ— диполь-Π΄ΠΈΠΏΠΎΠ»ΡŒΠ½ΠΎΡ— Π²Π·Π°Ρ”ΠΌΠΎΠ΄Ρ–Ρ— Π°Ρ‚ΠΎΠΌΡ–Π². ΠŸΡ€ΠΈ обчислСнні Ρ€Π°Π΄Ρ–Π°Π»ΡŒΠ½ΠΈΡ… ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½ΠΈΠΉ Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ–Π² диполь-Π΄ΠΈΠΏΠΎΠ»ΡŒΠ½ΠΎΡ— Π²Π·Π°Ρ”ΠΌΠΎΠ΄Ρ–Ρ— використано Ρ…Π²ΠΈΠ»ΡŒΠΎΠ²Ρ– Ρ„ΡƒΠ½ΠΊΡ†Ρ–Ρ— модСльного ΠΏΠΎΡ‚Π΅Π½Ρ†Ρ–Π°Π»Ρƒ Ѐьюса
    corecore