83 research outputs found

    Efficient Spatial Redistribution of Quantum Dot Spontaneous Emission from 2D Photonic Crystals

    Full text link
    We investigate the modification of the spontaneous emission dynamics and external quantum efficiency for self-assembled InGaAs quantum dots coupled to extended and localised photonic states in GaAs 2D-photonic crystals. The 2D-photonic bandgap is shown to give rise to a 5-10 times enhancement of the external quantum efficiency whilst the spontaneous emission rate is simultaneously reduced by a comparable factor. Our findings are quantitatively explained by a modal redistribution of spontaneous emission due to the modified local density of photonic states. The results suggest that quantum dots embedded within 2D-photonic crystals are suitable for practical single photon sources with high external efficiency

    Highly efficient single photon emission from single quantum dots within a two-dimensional photonic bandgap

    Full text link
    We report highly efficient single photon generation from InGaAs self-assembled quantum dots emitting within a two-dimensional photonic bandgap. A strongly suppressed multiphoton probability is obtained for single quantum dots in bulk GaAs and those emitting into the photonic bandgap. In the latter case, photoluminescence saturation spectroscopy is employed to measure a ~17 times enhancement of the average photon extraction efficiency, when compared to quantum dots in bulk GaAs. For quantum dots in the photonic crystal we measure directly an external quantum efficiency up to 26%, much higher than for quantum dots on the same sample without a tailored photonic environment. The results show that highly efficient quantum dot single photon sources can be realized, without the need for complex nanopositioning techniques

    Enhanced photoluminescence emission from two-dimensional silicon photonic crystal nanocavities

    Get PDF
    We present a temperature dependent photoluminescence study of silicon optical nanocavities formed by introducing point defects into two-dimensional photonic crystals. In addition to the prominent TO phonon assisted transition from crystalline silicon at ~1.10 eV we observe a broad defect band luminescence from ~1.05-1.09 eV. Spatially resolved spectroscopy demonstrates that this defect band is present only in the region where air-holes have been etched during the fabrication process. Detectable emission from the cavity mode persists up to room-temperature, in strong contrast the background emission vanishes for T > 150 K. An Ahrrenius type analysis of the temperature dependence of the luminescence signal recorded either in-resonance with the cavity mode, or weakly detuned, suggests that the higher temperature stability may arise from an enhanced internal quantum efficiency due to the Purcell-effect

    Dephasing of quantum dot exciton polaritons in electrically tunable nanocavities

    Full text link
    We experimentally and theoretically investigate dephasing of zero dimensional microcavity polaritons in electrically tunable single dot photonic crystal nanocavities. Such devices allow us to alter the dot-cavity detuning in-situ and to directly probe the influence on the emission spectrum of varying the incoherent excitation level and the lattice temperature. By comparing our results with theory we obtain the polariton dephasing rate and clarify its dependence on optical excitation power and lattice temperature. For low excitation levels we observe a linear temperature dependence, indicative of phonon mediated polariton dephasing. At higher excitation levels, excitation induced dephasing is observed due to coupling to the solid-state environment. The results provide new information on coherence properties of quantum dot microcavity polaritons.Comment: Figure 2, panel (b) changed to logarithmic + linear scal
    • …
    corecore