105,010 research outputs found
Is Explicit Congestion Notification usable with UDP?
We present initial measurements to determine if ECN is usable with
UDP traffic in the public Internet. This is interesting because ECN
is part of current IETF proposals for congestion control of UDPbased
interactive multimedia, and due to the increasing use of UDP
as a substrate on which new transport protocols can be deployed.
Using measurements from the author’s homes, their workplace,
and cloud servers in each of the nine EC2 regions worldwide, we
test reachability of 2500 servers from the public NTP server pool,
using ECT(0) and not-ECT marked UDP packets. We show that
an average of 98.97% of the NTP servers that are reachable using
not-ECT marked packets are also reachable using ECT(0) marked
UDP packets, and that ~98% of network hops pass ECT(0) marked
packets without clearing the ECT bits. We compare reachability of
the same hosts using ECN with TCP, finding that 82.0% of those
reachable with TCP can successfully negotiate and use ECN. Our
findings suggest that ECN is broadly usable with UDP traffic, and
that support for use of ECN with TCP has increased
Geometric quantum gates robust against stochastic control errors
We analyze a scheme for quantum computation where quantum gates can be
continuously changed from standard dynamic gates to purely geometric ones.
These gates are enacted by controlling a set of parameters that are subject to
unwanted stochastic fluctuations. This kind of noise results in a departure
from the ideal case that can be quantified by a gate fidelity. We find that the
maximum of this fidelity corresponds to quantum gates with a vanishing
dynamical phase.Comment: 4 pager
Mechanism for current saturation and energy dissipation in graphene transistors
From a combination of careful and detailed theoretical and experimental
studies, we demonstrate that the Boltzmann theory including all scattering
mechanisms gives an excellent account, with no adjustable parameters, of high
electric field transport in single as well as double-oxide graphene
transistors. We further show unambiguously that scattering from the substrate
and superstrate surface optical (SO) phonons governs the high field transport
and heat dissipation over a wide range of experimentally relevant parameters.
Models that neglect SO phonons altogether or treat them in a simple
phenomenological manner are inadequate. We outline possible strategies for
achieving higher current and complete saturation in graphene devices.Comment: revtex, 5 pages, 3 figures, to appear in Phys. Rev. Lett
Automated parameters for troubled-cell indicators using outlier detection
In Vuik and Ryan (2014) we studied the use of troubled-cell indicators for discontinuity detection in nonlinear hyperbolic partial differential equations and introduced a new multiwavelet technique to detect troubled cells. We found that these methods perform well as long as a suitable, problem-dependent parameter is chosen. This parameter is used in a threshold which decides whether or not to detect an element as a troubled cell. Until now, these parameters could not be chosen automatically. The choice of the parameter has impact on the approximation: it determines the strictness of the troubled-cell indicator. An inappropriate choice of the parameter will result in detection (and limiting) of too few or too many elements. The optimal parameter is chosen such that the minimal number of troubled cells is detected and the resulting approximation is free of spurious oscillations. In this paper we will see that for each troubled-cell indicator the sudden increase or decrease of the indicator value with respect to the neighboring values is important for detection. Indication basically reduces to detecting the outliers of a vector (one dimension) or matrix (two dimensions). This is done using Tukey's boxplot approach to detect which coefficients in a vector are straying far beyond others (Tukey, 1977). We provide an algorithm that can be applied to various troubled-cell indication variables. Using this technique the problem-dependent parameter that the original indicator requires is no longer necessary as the parameter will be chosen automatically
Generation of tunable Terahertz out-of-plane radiation using Josephson vortices in modulated layered superconductors
We show that a moving Josephson vortex in spatially modulated layered
superconductors generates out-of-plane THz radiation. Remarkably, the magnetic
and in-plane electric fields radiated are of the same order, which is very
unusual for any good-conducting medium. Therefore, the out-of-plane radiation
can be emitted to the vacuum without the standard impedance mismatch problem.
Thus, the proposed design can be more efficient for tunable THz emitters than
previous proposals, for radiation only propagating along the ab-plane.Comment: 7 pages, 1 figure. Phys. Rev. B (2005), in pres
Dynamic microscopic structures and dielectric response in the cubic-to-tetragonal phase transition for BaTiO3 studied by first-principles molecular dynamics simulation
The dynamic structures of the cubic and tetragonal phase in BaTiO3 and its
dielectric response above the cubic-to-tetragonal phase transition temperature
(Tp) are studied by first-principles molecular dynamics (MD) simulation. It's
shown that the phase transition is due to the condensation of one of the
transverse correlations. Calculation of the phonon properties for both the
cubic and tetragonal phase shows a saturation of the soft mode frequency near
60 cm-1 near Tp and advocates its order-disorder nature. Our first-principles
calculation leads directly to a two modes feature of the dielectric function
above Tp [Phys. Rev. B 28, 6097 (1983)], which well explains the long time
controversies between experiments and theories
- …