2,302 research outputs found

    Non-Adiabatic Spin Transfer Torque in Real Materials

    Full text link
    The motion of simple domain walls and of more complex magnetic textures in the presence of a transport current is described by the Landau-Lifshitz-Slonczewski (LLS) equations. Predictions of the LLS equations depend sensitively on the ratio between the dimensionless material parameter β\beta which characterizes non-adiabatic spin-transfer torques and the Gilbert damping parameter α\alpha. This ratio has been variously estimated to be close to 0, close to 1, and large compared to 1. By identifying β\beta as the influence of a transport current on α\alpha, we derive a concise, explicit and relatively simple expression which relates β\beta to the band structure and Bloch state lifetimes of a magnetic metal. Using this expression we demonstrate that intrinsic spin-orbit interactions lead to intra-band contributions to β\beta which are often dominant and can be (i) estimated with some confidence and (ii) interpreted using the "breathing Fermi surface" model.Comment: 18 pages, 9 figures; submitted to Phys. Rev.

    Thermalization of acoustic excitations in a strongly interacting one-dimensional quantum liquid

    Full text link
    We study inelastic decay of bosonic excitations in a Luttinger liquid. In a model with linear excitation spectrum the decay rate diverges. We show that this difficulty is resolved when the interaction between constituent particles is strong, and the excitation spectrum is nonlinear. Although at low energies the nonlinearity is weak, it regularizes the divergence in the decay rate. We develop a theoretical description of the approach of the system to thermal equilibrium. The typical relaxation rate scales as the fifth power of temperature

    Observation of particle hole asymmetry and phonon excitations in non-Fermi liquid systems: A high-resolution photoemission study of ruthenates

    Get PDF
    We investigate the temperature evolution of the electronic states in the vicinity of the Fermi level of a non-Fermi liquid (NFL) system, CaRuO3 using ultra high-resolution photoemission spectroscopy; isostructural SrRuO3 exhibiting Fermi liquid behavior despite similar electron interaction parameters as that of CaRuO3, is used as a reference. High-energy resolution in this study helps to reveal particle-hole asymmetry in the excitation spectra of CaRuO3 in contrast to that in SrRuO3. In addition, we observe signature of phonon excitations in the photoemission spectra of CaRuO3 at finite temperatures while these are weak in SrRuO3.Comment: 4 pages including 3 figure

    STM/STS Study on 4a X 4a Electronic Charge Order and Inhomogeneous Pairing Gap in Superconducting Bi2Sr2CaCu2O8+d

    Get PDF
    We performed STM/STS measurements on underdoped Bi2212 crystals with doping levels p ~ 0.11, ~ 0.13 and ~ 0.14 to examine the nature of the nondispersive 4a X 4a charge order in the superconducting state at T << Tc. The charge order appears conspicuously within the pairing gap, and low doping tends to favor the charge order. We point out the possibility that the 4a X 4a charge order will be dynamical in itself, and pinned down over regions with effective pinning centers. The pinned 4a X 4a charge order is closely related to the spatially inhomogeneous pairing gap structure, which has often been reported in STS measurements on high-Tc cuprates.Comment: 12 pages, 16 figures, to be published in Phys. Rev.

    Imaging density disturbances in water with 41.3 attosecond time resolution

    Full text link
    We show that the momentum flexibility of inelastic x-ray scattering may be exploited to invert its loss function, alowing real time imaging of density disturbances in a medium. We show the disturbance arising from a point source in liquid water, with a resolution of 41.3 attoseconds (4.13×10174.13 \times 10^{-17} sec) and 1.27 A˚\AA (1.27×1081.27 \times 10^{-8} cm). This result is used to determine the structure of the electron cloud around a photoexcited molecule in solution, as well as the wake generated in water by a 9 MeV gold ion. We draw an analogy with pump-probe techniques and suggest that energy-loss scattering may be applied more generally to the study of attosecond phenomena.Comment: 4 pages, 4 color figure

    Ultracold heteronuclear molecules and ferroelectric superfluids

    Full text link
    We analyze the possibility of a ferroelectric transition in heteronuclear molecules consisting of Bose-Bose, Bose-Fermi or Fermi-Fermi atom pairs. This transition is characterized by the appearance of a spontaneous electric polarization below a critical temperature. We discuss the existence of a ferroelectric Fermi liquid phase for Fermi molecules and the existence of a ferroelectric superfluid phase for Bose molecules characterized by the coexistence of ferroelectric and superfluid orders. Lastly, we propose an experiment to detect ferroelectric correlations through the observation of coherent dipole radiation pulses during time of flight.Comment: 4 pages and 3 figure

    Magnetic Coherence as a Universal Feature of Cuprate Superconductors

    Full text link
    Recent inelastic neutron scattering (INS) experiments on La2x_{2-x}Srx_xCuO4_4 have established the existence of a {\it magnetic coherence effect}, i.e., strong frequency and momentum dependent changes of the spin susceptibility, χ\chi'', in the superconducting phase. We show, using the spin-fermion model for incommensurate antiferromagnetic spin fluctuations, that the magnetic coherence effect establishes the ability of INS experiments to probe the electronic spectrum of the cuprates, in that the effect arises from the interplay of an incommensurate magnetic response, the form of the underlying Fermi surface, and the opening of the d-wave gap in the fermionic spectrum. In particular, we find that the magnetic coherence effect observed in INS experiments on La2x_{2-x}Srx_xCuO4_4 requires that the Fermi surface be closed around (π,π)(\pi,\pi) up to optimal doping. We present several predictions for the form of the magnetic coherence effect in YBa2_2Cu3_3O6+x_{6+x} in which an incommensurate magnetic response has been observed in the superconducting state.Comment: 9 pages, 12 figures; extended version of Phys. Rev B, R6483 (2000

    Observation of long-lived polariton states in semiconductor microcavities across the parametric threshold

    Full text link
    The excitation spectrum around the pump-only stationary state of a polariton optical parametric oscillator (OPO) in semiconductor microcavities is investigated by time-resolved photoluminescence. The response to a weak pulsed perturbation in the vicinity of the idler mode is directly related to the lifetime of the elementary excitations. A dramatic increase of the lifetime is observed for a pump intensity approaching and exceeding the OPO threshold. The observations can be explained in terms of a critical slowing down of the dynamics upon approaching the threshold and the following onset of the soft Goldstone mode

    Shear modulus of the hadron-quark mixed phase

    Full text link
    Robust arguments predict that a hadron-quark mixed phase may exist in the cores of some "neutron" stars. Such a phase forms a crystalline lattice with a shear modulus higher than that of the crust due to the high density and charge separation, even allowing for the effects of charge screening. This may lead to strong continuous gravitational-wave emission from rapidly rotating neutron stars and gravitational-wave bursts associated with magnetar flares and pulsar glitches. We present the first detailed calculation of the shear modulus of the mixed phase. We describe the quark phase using the bag model plus first-order quantum chromodynamics corrections and the hadronic phase using relativistic mean-field models with parameters allowed by the most massive pulsar. Most of the calculation involves treating the "pasta phases" of the lattice via dimensional continuation, and we give a general method for computing dimensionally continued lattice sums including the Debye model of charge screening. We compute all the shear components of the elastic modulus tensor and angle average them to obtain the effective (scalar) shear modulus for the case where the mixed phase is a polycrystal. We include the contributions from changing the cell size, which are necessary for the stability of the lower-dimensional portions of the lattice. Stability also requires a minimum surface tension, generally tens of MeV/fm^2 depending on the equation of state. We find that the shear modulus can be a few times 10^33 erg/cm^3, two orders of magnitude higher than the first estimate, over a significant fraction of the maximum mass stable star for certain parameter choices.Comment: 22 pages, 12 figures, version accepted by Phys. Rev. D, with the corrections to the shear modulus computation and Table I given in the erratu

    Polarization fluctuations in insulators and metals: New and old theories merge

    Full text link
    The ground-state fluctuation of polarization P is finite in insulators and divergent in metals, owing to the SWM sum rule [I. Souza, T. Wilkens, and R. M. Martin, Phys. Rev. B 62, 1666 (2000)]. This is a virtue of periodic (i.e. transverse) BCs. I show that within any other boundary conditions the P fluctuation is finite even in metals, and a generalized sum rule applies. The boundary-condition dependence is a pure correlation effect, not present at the independent-particle level. In the longitudinal case div P = -rho, and one equivalently addresses charge fluctuations: the generalized sum rule reduces then to a well known result of many-body theory.Comment: 4 pages, no figur
    corecore