2,183 research outputs found

    Orientational relaxation in a dispersive dynamic medium : Generalization of the Kubo-Ivanov-Anderson jump diffusion model to include fractional environmental dynamics

    Get PDF
    Ivanov-Anderson (IA) model (and an earlier treatment by Kubo) envisages a decay of the orientational correlation by random but large amplitude molecular jumps, as opposed to infinitesimal small jumps assumed in Brownian diffusion. Recent computer simulation studies on water and supercooled liquids have shown that large amplitude motions may indeed be more of a rule than exception. Existing theoretical studies on jump diffusion mostly assume an exponential (Poissonian) waiting time distribution for jumps, thereby again leading to an exponential decay. Here we extend the existing formalism of Ivanov and Anderson to include an algebraic waiting time distribution between two jumps. As a result, the first and second rank orientational time correlation functions show the same long time power law, but their short time decay behavior is quite different. The predicted Cole-Cole plot of dielectric relaxation reproduces various features of non-Debye behaviour observed experimentally. We also developed a theory where both unrestricted small jumps and large angular jumps coexist simultaneously. The small jumps are shown to have a large effect on the long time decay, particularly in mitigating the effects of algebraic waiting time distribution, and in giving rise to an exponential-like decay, with a time constant, surprisingly, less than the time constant that arises from small amplitude decay alone.Comment: 14 figure

    Orientational relaxation in a discotic liquid crystal

    Get PDF
    We investigate orientational relaxation of a model discotic liquid crystal, consists of disc-like molecules, by molecular dynamics simulations along two isobars starting from the high temperature isotropic phase. The two isobars have been so chosen that (A) the phase sequence isotropic (I)-nematic (N)-columnar (C) appears upon cooling along one of them and (B) the sequence isotropic (I)-columnar (C) along the other. While the orientational relaxation in the isotropic phase near the I-N phase transition in system (A) shows a power law decay at short to intermediate times, such power law relaxation is not observed in the isotropic phase near the I-C phase boundary in system (B). In order to understand this difference (the existence or the absence of the power law decay), we calculated the the growth of the orientational pair distribution functions (OPDF) near the I-N phase boundary and also near the I-C phase boundary. We find that OPDF shows a marked growth in long range correlation as the I-N phase boundary is approached in the I-N-C system (A), but such a growth is absent in the I-C system, which appears to be consistent with the result that I-N phase transition in the former is weakly first order while the the I-C phase transition in the later is not weak. As the system settles into the nematic phase, the decay of the single-particle second-rank orientational OTCF follows a pattern that is similar to what is observed with calamitic liquid crystals and supercooled molecular liquids.Comment: 16 pages and 4 figure

    Competing PT potentials and re-entrant PT symmetric phase for a particle in a box

    Full text link
    We investigate the effects of competition between two complex, PT\mathcal{PT}-symmetric potentials on the PT\mathcal{PT}-symmetric phase of a "particle in a box". These potentials, given by VZ(x)=iZsign(x)V_Z(x)=iZ\mathrm{sign}(x) and Vξ(x)=iξ[δ(xa)δ(x+a)]V_\xi(x)=i\xi[\delta(x-a)-\delta(x+a)], represent long-range and localized gain/loss regions respectively. We obtain the PT\mathcal{PT}-symmetric phase in the (Z,ξ)(Z,\xi) plane, and find that for locations ±a\pm a near the edge of the box, the PT\mathcal{PT}-symmetric phase is strengthened by additional losses to the loss region. We also predict that a broken PT\mathcal{PT}-symmetry will be restored by increasing the strength ξ\xi of the localized potential. By comparing the results for this problem and its lattice counterpart, we show that a robust PT\mathcal{PT}-symmetric phase in the continuum is consistent with the fragile phase on the lattice. Our results demonstrate that systems with multiple, PT\mathcal{PT}-symmetric potentials show unique, unexpected properties.Comment: 7 pages, 3 figure

    Entropy of three-dimensional asymptotically flat cosmological solutions

    Full text link
    The thermodynamics of three-dimensional asymptotically flat cosmological solutions that play the same role than the BTZ black holes in the anti-de Sitter case is derived and explained from holographic properties of flat space. It is shown to coincide with the flat-space limit of the thermodynamics of the inner black hole horizon on the one hand and the semi-classical approximation to the gravitational partition function associated to the entropy of the outer horizon on the other. This leads to the insight that it is the Massieu function that is universal in the sense that it can be computed at either horizon.Comment: 16 pages Latex file, v2: references added, cosmetic changes, v3: 1 reference adde

    Inductive algebras and homogeneous shifts

    Full text link
    Inductive algebras for the irreducible unitary representations of the universal cover of the group of unimodular two by two matrices are classified. The classification of homogeneous shift operators is obtained as a direct consequence. This gives a new approach to the results of Bagchi and Misra

    Pseudo-Hermiticity and some consequences of a generalized quantum condition

    Full text link
    We exploit the hidden symmetry structure of a recently proposed non-Hermitian Hamiltonian and of its Hermitian equivalent one. This sheds new light on the pseudo-Hermitian character of the former and allows access to a generalized quantum condition. Special cases lead to hyperbolic and Morse-like potentials in the framework of a coordinate-dependent mass model.Comment: 10 pages, no figur

    Pseudo-Hermitian Interactions in Dirac Theory: Examples

    Get PDF
    We consider a couple of examples to study the pseudo-Hermitian interaction in relativistic quantum mechanics. Rasbha interaction, commonly used to study the spin Hall effect, is considered with imaginary coupling. The corresponding Dirac Hamiltonian is shown to be parity pseudo-Hermitian. In the other example we consider parity pseudo-Hermitian scalar interaction with arbitrary parameter in Dirac theory. In both the cases we show that the energy spectrum is real and all the other features of non-relativistic pseudo-Hermitian formulation are present. Using the spectral method the positive definite metric operator (η\eta) has been calculated explicitly for both the models to ensure positive definite norms for the state vectors.Comment: 13 pages, Latex, No figs, Revised version to appear in MPL

    Mean field baryon magnetic moments and sumrules

    Full text link
    New developments have spurred interest in magnetic moments (μ\mu-s) of baryons. The measurement of some of the decuplet μ\mu-s and the findings of new sumrules from various methods are partly responsible for this renewed interest. Our model, inspired by large colour approximation, is a relativistic self consistent mean field description with a modified Richardson potential and is used to describe the μ\mu-s and masses of all baryons with up (u), down (d) and strange (s) quarks. We have also checked the validity of the Franklin sumrule (referred to as CGSR in the literature) and sumrules of Luty, March-Russell and White. We found that our result for sumrules matches better with experiment than the non-relativistic quark model prediction. We have also seen that quark magnetic moments depend on the baryon in which they belong while the naive quark model expects them to be constant.Comment: 7 pages, no figure, uses epl.cl

    Shape-invariant quantum Hamiltonian with position-dependent effective mass through second order supersymmetry

    Full text link
    Second order supersymmetric approach is taken to the system describing motion of a quantum particle in a potential endowed with position-dependent effective mass. It is shown that the intertwining relations between second order partner Hamiltonians may be exploited to obtain a simple shape-invariant condition. Indeed a novel relation between potential and mass functions is derived, which leads to a class of exactly solvable model. As an illustration of our procedure, two examples are given for which one obtains whole spectra algebraically. Both shape-invariant potentials exhibit harmonic-oscillator-like or singular-oscillator-like spectra depending on the values of the shape-invariant parameter.Comment: 16 pages, 5 figs; Present e-mail of AG: [email protected]
    corecore