25 research outputs found

    Mean Dice’s similarity index computed for , , .

    No full text
    <p>Locally Linear Embedding is in blue, Isomap is in red and Laplacian Eigenmaps is in black. Solid lines represent the mean Dice’s similarity index, doted lines represents the standard deviation. Mean Dice’s similarity index against: () the number of atlases fused in STAPLE ( and fixed to best parameters), () the neighbourhood size in computing the manifold ( and fixed to best parameters), and () the manifold dimension ( and fixed to best parameters).</p

    Hippocampal segmentation: automated (blue) vs manual (red).

    No full text
    <p>Overlapping area in purple. Row: (i) High case (Dice = 0.9398), (ii) Typical case (Dice = 0.9073), (iii) Low case (Dice = 0.8614). Column: (a) Coronal view, (b) Sagittal view, (c) Axial view.</p

    Bland-Altman plot.

    No full text
    <p>Each point corresponds to an hippocampal segmentation. The difference between automatic and manual estimates is plotted against their average. The solid horizontal line corresponds to the average difference, and the dashed lines are plotted at average +/−1.96 standard deviations of the difference.</p

    Similarity between P1 and P2 networks across density thresholds using atlases at three node scales.

    No full text
    <p>Significance of similarity was calculated by comparing the distribution of within-subject DC to the expected DC by chance, given the density of the networks. Shown is the mean negative -value of the DC between binary networks thresholded at a given density. The within-subject DC's were bootstrapped to obtain a standard error on the mean (dashed lines). A global peak similarity was found at a density of 0.196, 0.161, 0.106 and 0.142 for the Common (34 nodes), Hammers (44 nodes), Desikan-Killiany (68 nodes) and AAL (78 nodes) atlases, respectively.</p
    corecore