17,839 research outputs found

    Software Agents

    No full text
    being used, and touted, for applications as diverse as personalised information management, electronic commerce, interface design, computer games, and management of complex commercial and industrial processes. Despite this proliferation, there is, as yet, no commonly agreed upon definition of exactly what an agent is ā€” Smith et al. (1994) define it as ā€œa persistent software entity dedicated to a specific purposeā€; Selker (1994) takes agents to be ā€œcomputer programs that simulate a human relationship by doing something that another person could do for youā€; and Janca (1995) defines an agent as ā€œa software entity to which tasks can be delegatedā€. To capture this variety, a relatively loose notion of an agent as a self-contained program capable of controlling its own decision making and acting, based on its perception of its environment, in pursuit of one or more objectives will be used here. Within the extant applications, three distinct classes of agent can be identified. At the simplest level, there are ā€œgopher ā€ agents, which execute straightforward tasks based on pre-specified rules and assumptions (eg inform me when the share price deviates by 10 % from its mean position or tell me when I need to reorder stock items). The next level of sophistication involves ā€œservice performingā€ agents, which execute a well defined task at the request of a user (eg find me the cheapest flight to Paris or arrange a meeting with the managing director some day next week). Finally, there are ā€œpredictive ā€ agents, which volunteer information or services to a user, without being explicitly asked, whenever it is deemed appropriate (eg an agent may monitor newsgroups on the INTERNET and return discussions that it believes to be of interest to the user or a holiday agent may inform its user that a travel firm is offering large discounts on holidays to South Africa knowing that the user is interested in safaris). Common to all these classes are the following key hallmarks of agenthoo

    When the Course Management System Isn\u27t Enough

    Get PDF
    Many articles have been written extoling the need for interactivity in the online classroom. Zundel (2006) states that not only should interactivity be effectively integrated, but that it is essential for enhancing the learning in online courses just as interactivity is essential for on-campus learners. Mabrito (2004) contends that success is enhanced in online courses by engaging students as active learners rather than passive participants. Mabrito goes on to state that this engagement should include ample opportunities for students to interact with not only the course content, but also with the instructor and fellow classmates

    Pitfalls of Agent-Oriented Development

    No full text
    While the theoretical and experimental foundations of agent-based systems are becoming increasingly well understood, comparatively little effort has been devoted to understanding the pragmatics of (multi-) agent systems development - the everyday reality of carrying out an agent-based development project. As a result, agent system developers are needlessly repeating the same mistakes, with the result that, at best, resources are wasted - at worst, projects fail. This paper identifies the main pitfalls that await the agent system developer, and where possible, makes tentative recommendations for how these pitfalls can be avoided or rectified

    A comparative study of game theoretic and evolutionary models for software agents

    No full text
    Most of the existing work in the study of bargaining behaviour uses techniques from game theory. Game theoretic models for bargaining assume that players are perfectly rational and that this rationality in common knowledge. However, the perfect rationality assumption does not hold for real-life bargaining scenarios with humans as players, since results from experimental economics show that humans find their way to the best strategy through trial and error, and not typically by means of rational deliberation. Such players are said to be boundedly rational. In playing a game against an opponent with bounded rationality, the most effective strategy of a player is not the equilibrium strategy but the one that is the best reply to the opponent's strategy. The evolutionary model provides a means for studying the bargaining behaviour of boundedly rational players. This paper provides a comprehensive comparison of the game theoretic and evolutionary approaches to bargaining by examining their assumptions, goals, and limitations. We then study the implications of these differences from the perspective of the software agent developer

    An anytime approximation method for the inverse Shapley value problem

    No full text
    Coalition formation is the process of bringing together two or more agents so as to achieve goals that individuals on their own cannot, or to achieve them more efficiently. Typically, in such situations, the agents have conflicting preferences over the set of possible joint goals. Thus, before the agents realize the benefits of cooperation, they must find a way of resolving these conflicts and reaching a consensus. In this context, cooperative game theory offers the voting game as a mechanism for agents to reach a consensus. It also offers the Shapley value as a way of measuring the influence or power a player has in determining the outcome of a voting game. Given this, the designer of a voting game wants to construct a game such that a players Shapley value is equal to some desired value. This is called the inverse Shapley value problem. Solving this problem is necessary, for instance, to ensure fairness in the players voting powers. However, from a computational perspective, finding a players Shapley value for a given game is #p-complete. Consequently, the problem of verifying that a voting game does indeed yield the required powers to the agents is also #P-complete. Therefore, in order to overcome this problem we present a computationally efficient approximation algorithm for solving the inverse problem. This method is based on the technique of successive approximations; it starts with some initial approximate solution and iteratively updates it such that after each iteration, the approximate gets closer to the required solution. This is an anytime algorithm and has time complexity polynomial in the number of players. We also analyze the performance of this method in terms of its approximation error and the rate of convergence of an initial solution to the required one. Specifically, we show that the former decreases after each iteration, and that the latter increases with the number of players and also with the initial approximation error. Copyright Ā© 2008, International Foundation for Autonomous Agents and Multiagent Systems (www.ifaarnas.org). All rights reserved

    Organisational Abstractions for the Analysis and Design of Multi-Agent Systems

    No full text
    The architecture of a multi-agent system can naturally be viewed as a computational organisation. For this reason, we believe organisational abstractions should play a central role in the analysis and design of such systems. To this end, the concepts of agent roles and role models are increasingly being used to specify and design multi-agent systems. However, this is not the full picture. In this paper we introduce three additional organisational concepts - organisational rules, organisational structures, and organisational patterns - that we believe are necessary for the complete specification of computational organisations. We view the introduction of these concepts as a step towards a comprehensive methodology for agent-oriented systems

    On efficient procedures for multi-issue negotiation

    No full text
    This paper studies bilateral, multi-issue negotiation between self-interested agents with deadlines. There are a number of procedures for negotiating the issues and each of these gives a different outcome. Thus, a key problem is to decide which one to use. Given this, we study the three main alternatives: the package deal, the simultaneous procedure, and the sequential procedure. First, we determine equilibria for the case where each agent is uncertain about its opponentā€™s deadline. We then compare the outcomes for these procedures and determine the one that is optimal (in this case, the package deal is optimal for each party). We then compare the procedures in terms of their time complexity, the uniqueness and Pareto optimality of their solutions, and their time of agreement
    • ā€¦
    corecore