513 research outputs found

    NIOSOMES AS AN EMERGING FORMULATION TOOL FOR DRUG DELIVERY-A REVIEW

    Get PDF
    Nonionic surfactant based vesicles which are uni/multilamellar in structures are called niosomes. These vesicles contains an aqueous interior surrounded by one or more amphiphilic bilayer membrane forming surfactant which separates them from the bulk solution, and are also called as supramolecular aggregates. Niosomes, being an efficient drug delivery system, investigations are carried out to utilize this system to treat various disorders, to promote improved patient compliance, lesser side effects, reduction in dose, lesser dosage frequency, and higher amount of the drug at the particular site so as to lessen an excessive contact with the whole body. The Pharmacokinetic and Pharmacodynamic profile of Niosomal drug delivery system vary for various entrapped drugs. Drugs that are successful in the mitigation or treatment of CNS disorders should cross the BBB to reach the brain, as BBB seems to be an obstacle for a large number of drugs, including CNS active drugs. This article compiles recent techniques for the preparation and characterization of niosomes, the effect of formulation variables on its physicochemical properties and discussed about its effective applications in drug delivery

    Fabrication and characterization of chitosan nanoparticles and collagen-loaded polyurethane nanocomposite membrane coated with heparin for atrial septal defect (ASD) closure

    Get PDF
    Atrial septal defect (ASD) constitutes 30–40% of all congenital heart diseases in adults. The most common complications in the treatment of ASD are embolization of the device and thrombosis formation. In this research, an occluding patch was developed for ASD treatment using a well-known textile technology called electrospinning. For the first time, a cardiovascular occluding patch was fabricated using medical grade polyurethane (PU) loaded with bioactive agents namely chitosan nanoparticles (Cn) and collagen (Co) which is then coated with heparin (Hp). Fourier transform infrared spectrum showed characteristic vibrations of several active constituents and changes in the absorbance due to the inclusion of active ingredients in the patch. The contact angle analysis demonstrated no significant decrease in contact angle compared to the control and the composite patches. The structure of the electrospun nanocomposite (PUCnCoHp) was examined through scanning electron microscopy. A decrease in nanofiber diameter between control PU and PUCnCoHp nanocomposite was observed. Water uptake was found to be decreased for the PUCnCoHp nanocomposite against the control. The hemocompatibility properties of the PUCnCoHp ASD occluding patch was inferred through in vitro hemocompatibility tests like activated partial thromboplastin time (APTT), prothrombin time (PT) and hemolysis assay. It was found that the PT and APTT time was significantly prolonged for the fabricated PUCnCoHp ASD occluding patch compared to the control. Likewise, the hemolysis percentage was also decreased for the PUCnCoHp ASD patch against the control. In conclusion, the developed PUCnCoHp patch demonstrates potential properties to be used for ASD occlusion

    A Study of Topology Characteristics on the Real Deployment of Wireless Sensor Networks

    Get PDF
    This paper investigates the effects of three parameters on the power consumption of sensor motes namely transmit power, frequency channel and sampling rate. Two wireless sensor network (WSN) test-beds have been deployed with two different types of topology; distributed and centralized. The WSN test-beds are built by using Crossbow IRIS motes where the effects of both real indoor and outdoor environment are investigated. Two different scenarios are considered which are line of sight (LOS) and non-LOS for both scenarios. In the case of centralized WSN with star topology, we discovered an interesting finding that the various transmit powers (ranging from 3.2dBm to -17dBm) do not vary the consumed power or in other word, the consumed powers across various transmit powers are almost the same for a given fixed distance value. The only parameter that affects the power consumption is the sampling rate. By increasing the rate, we can reduce the power consumption significantly. In the case of distributed WSN, we discovered that both transmit power and sampling rate affect the power consumption. The transmit power must be reduced and the sampling rate must be increased in order to save power in distributed WSN

    Sorptivity of self-compacting concrete containing fly ash and silica fume

    Get PDF
    This paper presents the surface water absorption of self-compacting concrete (SCC) containing fly ash and silica fume using sorptivity test. Ordinary Portland cement was partially replaced by various combinations of fly ash and silica fume. Test results show that the presence of fly ash and silica fume significantly reduce the surface water absorption of self-compacting concrete at a water-binder ratio of 0.38. When only fly ash is used to partially replace Ordinary Portland cement, a more noticeable reduction in sorptivity is found when the fly ash content is greater than 20%

    UV induced surface modification on improving the cytocompatibility of metallocene polyethylene

    Get PDF
    Demand for medical implants is rising day by day as the world becomes the place for more diseased and older people. Accordingly, in this research, metallocene polyethylene (mPE), a commonly used polymer was treated with UV rays for improving its biocompatibility. Scanning electron microscopy (SEM) images confirmed the formation of crests and troughs, which depicts the improvement of surface roughness of mPE substrates caused by UV etching. Accordingly, the contact angle measurements revealed that the wettability of mPE-2.5 J/cm2 (68.09º) and mPE-5 J/cm2 (57.93º) samples were found to be increased compared to untreated mPE (86.84º) indicating better hydrophilicity. Further, the UV treated surface exhibited enhanced blood compatibility as determined in APTT (untreated mPE- 55.3 ± 2.5 s, mPE-2.5 J/ cm2 - 76.7 ± 4.1 s and mPE-5 J/cm2 - 112.3 ± 2 s) and PT (untreated mPE - 24.7 ± 1.5 s, mPE- 2.5 J/cm2 - 34.3 ± 1.1 s and mPE-5 J/cm2 - 43 ± 2 s) assay. Moreover, the treated mPE-2.5 J/cm2 (4.88%) and mPE-5 J/cm2 (1.79%) showed decreased hemolytic percentage compared to untreated mPE (15.40%) indicating better safety to red blood cells. Interestingly, the changes in physicochemical properties of mPE are directly proportional to the dosage of the UV rays. UV modified mPE surfaces were found to be more compatible as identified through MTT assay, photomicrograph and SEM images of the seeded 3T3 cell population. Hence UV-modified surface of mPE may be successfully exploited for medical implants

    Gallic acid induced apoptotic events in HCT-15 colon cancer cells

    Get PDF
    AIM: To investigate the inhibitory action of diet-derived phenolic compound gallic acid (GA) against HCT-15 colon cancer cells. METHODS: The antiproliferative effect of GA against colon cancer cells was determined by performing thiazolyl blue tetrazolium bromide (MTT) assay. The colony forming ability of GA treated colon cancer cells was evaluated using the colony forming assay. The cell cycle changes induced by GA in HCT-15 cells were analyzed by propidium iodide staining. Levels of reactive oxygen species (ROS) and mitochondrial membrane potential of HCT-15 exposed to GA was assessed using 2',7'-dichlorfluorescein-diacetate and rhodamine-123 respectively, with the help of flow cytometry. Morphological changes caused by GA treatment in the colon cancer cells were identified by scanning electron microscope and photomicrograph examination. Apoptosis was confirmed using flow cytometric analysis of GA treated HCT-15 cells after staining with Yo-Pro-1. RESULTS: MTT assay results illustrated that GA has an inhibitory effect on HCT-15 cells with IC50 value of 740 μmol/L. A time-dependent inhibition of colony formation was evident with GA treatment. Cell cycle arrest was evident from the accumulation of GA treated HCT-15 cells at sub-G1 phase (0.98 ± 1.03 vs 58.01 ± 2.05) with increasing exposure time. Flow cytometric analysis of GA treated HCT-15 cells depicted early events associated with apoptosis like lipid layer breakage and fall in mitochondrial membrane potential apart from an increase in the generation of ROS which were in a time dependent manner. SEM and photomicrograph images of the GA-treated cells displayed membrane blebbing and cell shrinking characteristics of apoptosis. Further apoptosis confirmation by Yo-Pro-1 staining also showed the time-dependent increase of apoptotic cells after treatment. CONCLUSION: These results show that GA induced ROS dependent apoptosis and inhibited the growth of colon cancer cells

    Shear Behaviour of RC T-Beams with Externally Bonded Discrete CFF Strips – A Experimental and Finite Element Study

    Get PDF
    The application of fibre reinforced polymer (FRP) composites for retrofitting and strengthening of existing reinforced concrete (RC) structures has fascinated the attention of researchers and engineers in the recent decades.  This paper presents the results of experimental and finite element (FE) investigation of shear behaviour of reinforced concrete T-beams repaired with externally bonded bi-directional discrete carbon fibre fabric (CFF) strips.  The reinforced concrete T-beams were tested under four point bending system to investigate the performance of CFF shear strengthening scheme in terms of ultimate load carrying capacity.  These beams were modelled using LUSAS software.  To evaluate the behaviour of the simulated models, the predicted results were compared with the experimental results.  The experimental results show that the gain in shear capacity of the CFF repaired beams ranged between 20% and 40% over the control beam.  Thus, it can be concluded that the externally bonded CFF strips significantly increased the shear capacity of CFF repaired beams.  It was generally observed that the developed FE model shows better agreement with the experimental results.  The results of load-deflection profile, cracking pattern, modes of failure, and strain distribution in discrete CFF strips are presented

    A q-deformed nonlinear map

    Full text link
    A scheme of q-deformation of nonlinear maps is introduced. As a specific example, a q-deformation procedure related to the Tsallis q-exponential function is applied to the logistic map. Compared to the canonical logistic map, the resulting family of q-logistic maps is shown to have a wider spectrum of interesting behaviours, including the co-existence of attractors -- a phenomenon rare in one dimensional maps.Comment: 17 pages, 19 figure
    corecore