1,976 research outputs found

    Modified Regge calculus as an explanation of dark energy

    Full text link
    Using Regge calculus, we construct a Regge differential equation for the time evolution of the scale factor a(t)a(t) in the Einstein-de Sitter cosmology model (EdS). We propose two modifications to the Regge calculus approach: 1) we allow the graphical links on spatial hypersurfaces to be large, as in direct particle interaction when the interacting particles reside in different galaxies, and 2) we assume luminosity distance DLD_L is related to graphical proper distance DpD_p by the equation DL=(1+z)DpDpD_L = (1+z)\sqrt{\overrightarrow{D_p}\cdot \overrightarrow{D_p}}, where the inner product can differ from its usual trivial form. The modified Regge calculus model (MORC), EdS and Λ\LambdaCDM are compared using the data from the Union2 Compilation, i.e., distance moduli and redshifts for type Ia supernovae. We find that a best fit line through log(DLGpc)\displaystyle \log{(\frac{D_L}{Gpc})} versus logz\log{z} gives a correlation of 0.9955 and a sum of squares error (SSE) of 1.95. By comparison, the best fit Λ\LambdaCDM gives SSE = 1.79 using HoH_o = 69.2 km/s/Mpc, ΩM\Omega_{M} = 0.29 and ΩΛ\Omega_{\Lambda} = 0.71. The best fit EdS gives SSE = 2.68 using HoH_o = 60.9 km/s/Mpc. The best fit MORC gives SSE = 1.77 and HoH_o = 73.9 km/s/Mpc using R=A1R = A^{-1} = 8.38 Gcy and m=1.71×1052m = 1.71\times 10^{52} kg, where RR is the current graphical proper distance between nodes, A1A^{-1} is the scaling factor from our non-trival inner product, and mm is the nodal mass. Thus, MORC improves EdS as well as Λ\LambdaCDM in accounting for distance moduli and redshifts for type Ia supernovae without having to invoke accelerated expansion, i.e., there is no dark energy and the universe is always decelerating.Comment: 15 pages text, 6 figures. Revised as accepted for publication in Class. Quant. Gra

    Expansive actions on uniform spaces and surjunctive maps

    Full text link
    We present a uniform version of a result of M. Gromov on the surjunctivity of maps commuting with expansive group actions and discuss several applications. We prove in particular that for any group Γ\Gamma and any field \K, the space of Γ\Gamma-marked groups GG such that the group algebra \K[G] is stably finite is compact.Comment: 21 page

    Maxwell equations in matrix form, squaring procedure, separating the variables, and structure of electromagnetic solutions

    Full text link
    The Riemann -- Silberstein -- Majorana -- Oppenheimer approach to the Maxwell electrodynamics in vacuum is investigated within the matrix formalism. The matrix form of electrodynamics includes three real 4 \times 4 matrices. Within the squaring procedure we construct four formal solutions of the Maxwell equations on the base of scalar Klein -- Fock -- Gordon solutions. The problem of separating physical electromagnetic waves in the linear space \lambda_{0}\Psi^{0}+\lambda_{1}\Psi^{1}+\lambda_{2}\Psi^{2}+ lambda_{3}\Psi^{3} is investigated, several particular cases, plane waves and cylindrical waves, are considered in detail.Comment: 26 pages 16 International Seminar NCPC, May 19-22, 2009, Minsk, Belaru

    Von Neumann Regular Cellular Automata

    Full text link
    For any group GG and any set AA, a cellular automaton (CA) is a transformation of the configuration space AGA^G defined via a finite memory set and a local function. Let CA(G;A)\text{CA}(G;A) be the monoid of all CA over AGA^G. In this paper, we investigate a generalisation of the inverse of a CA from the semigroup-theoretic perspective. An element τCA(G;A)\tau \in \text{CA}(G;A) is von Neumann regular (or simply regular) if there exists σCA(G;A)\sigma \in \text{CA}(G;A) such that τστ=τ\tau \circ \sigma \circ \tau = \tau and στσ=σ\sigma \circ \tau \circ \sigma = \sigma, where \circ is the composition of functions. Such an element σ\sigma is called a generalised inverse of τ\tau. The monoid CA(G;A)\text{CA}(G;A) itself is regular if all its elements are regular. We establish that CA(G;A)\text{CA}(G;A) is regular if and only if G=1\vert G \vert = 1 or A=1\vert A \vert = 1, and we characterise all regular elements in CA(G;A)\text{CA}(G;A) when GG and AA are both finite. Furthermore, we study regular linear CA when A=VA= V is a vector space over a field F\mathbb{F}; in particular, we show that every regular linear CA is invertible when GG is torsion-free elementary amenable (e.g. when G=Zd, dNG=\mathbb{Z}^d, \ d \in \mathbb{N}) and V=FV=\mathbb{F}, and that every linear CA is regular when VV is finite-dimensional and GG is locally finite with Char(F)o(g)\text{Char}(\mathbb{F}) \nmid o(g) for all gGg \in G.Comment: 10 pages. Theorem 5 corrected from previous versions, in A. Dennunzio, E. Formenti, L. Manzoni, A.E. Porreca (Eds.): Cellular Automata and Discrete Complex Systems, AUTOMATA 2017, LNCS 10248, pp. 44-55, Springer, 201

    Helicity, polarization, and Riemann-Silberstein vortices

    Full text link
    Riemann-Silberstein (RS) vortices have been defined as surfaces in spacetime where the complex form of a free electromagnetic field given by F=E+iB is null (F.F=0), and they can indeed be interpreted as the collective history swept out by moving vortex lines of the field. Formally, the nullity condition is similar to the definition of "C-lines" associated with a monochromatic electric or magnetic field, which are curves in space where the polarization ellipses degenerate to circles. However, it was noted that RS vortices of monochromatic fields generally oscillate at optical frequencies and are therefore unobservable while electric and magnetic C-lines are steady. Here I show that under the additional assumption of having definite helicity, RS vortices are not only steady but they coincide with both sets of C-lines, electric and magnetic. The two concepts therefore become one for waves of definite frequency and helicity. Since the definition of RS vortices is relativistically invariant while that of C-lines is not, it may be useful to regard the vortices as a wideband generalization of C-lines for waves of definite helicity.Comment: 5 pages, no figures. Submitted to J of Optics A, special issue on Singular Optics; minor changes from v.

    Neoadjuvant treatment of Dermatofibrosarcoma Protuberans of pancreas with Imatinib: case report and systematic review of literature

    Get PDF
    Abstract Dermatofibrosarcoma Protuberans (DFSP) is a rare skin tumor, characterized by frequent local recurrence but is seldom metastatic. It is histologically characterized by storiform arrangement of spindle cells. Cytogenetically, most tumors are characterized by translocation 17:22 leading to overexpression of tyrosine kinase PDGFB which can be targeted with tyrosine kinase inhibitor, Imatinib. We describe the first case of unresectable pancreatic metastases from DFSP treated with neoadjuvant Imatinib and subsequently R0 metastectomy. Additionally, a comprehensive systematic review of DFSP pancreatic metastases and the current published data on the use of Imatinib in DFSP is summarized.Peer Reviewe

    Sustained Activation of Cell Adhesion Is a Differentially Regulated Process in B Lymphopoiesis

    Get PDF
    It is largely unknown how hematopoietic progenitors are positioned within specialized niches of the bone marrow microenvironment during development. Chemokines such as CXCL12, previously called stromal cell–derived factor 1, are known to activate cell integrins of circulating leukocytes resulting in transient adhesion before extravasation into tissues. However, this short-term effect does not explain the mechanism by which progenitor cells are retained for prolonged periods in the bone marrow. Here we show that in human bone marrow CXCL12 triggers a sustained adhesion response specifically in progenitor (pro- and pre-) B cells. This sustained adhesion diminishes during B cell maturation in the bone marrow and, strikingly, is absent in circulating mature B cells, which exhibit only transient CXCL12-induced adhesion. The duration of adhesion is tightly correlated with CXCL12-induced activation of focal adhesion kinase (FAK), a known molecule involved in integrin-mediated signaling. Sustained adhesion of progenitor B cells is associated with prolonged FAK activation, whereas transient adhesion in circulating B cells is associated with short-lived FAK activation. Moreover, sustained and transient adhesion responses are differentially affected by pharmacological inhibitors of protein kinase C and phosphatidylinositol 3-kinase. These results provide a developmental cell stage–specific mechanism by which chemokines orchestrate hematopoiesis through sustained rather than transient activation of adhesion and cell survival pathways

    Shift-Symmetric Configurations in Two-Dimensional Cellular Automata: Irreversibility, Insolvability, and Enumeration

    Full text link
    The search for symmetry as an unusual yet profoundly appealing phenomenon, and the origin of regular, repeating configuration patterns have long been a central focus of complexity science and physics. To better grasp and understand symmetry of configurations in decentralized toroidal architectures, we employ group-theoretic methods, which allow us to identify and enumerate these inputs, and argue about irreversible system behaviors with undesired effects on many computational problems. The concept of so-called configuration shift-symmetry is applied to two-dimensional cellular automata as an ideal model of computation. Regardless of the transition function, the results show the universal insolvability of crucial distributed tasks, such as leader election, pattern recognition, hashing, and encryption. By using compact enumeration formulas and bounding the number of shift-symmetric configurations for a given lattice size, we efficiently calculate the probability of a configuration being shift-symmetric for a uniform or density-uniform distribution. Further, we devise an algorithm detecting the presence of shift-symmetry in a configuration. Given the resource constraints, the enumeration and probability formulas can directly help to lower the minimal expected error and provide recommendations for system's size and initialization. Besides cellular automata, the shift-symmetry analysis can be used to study the non-linear behavior in various synchronous rule-based systems that include inference engines, Boolean networks, neural networks, and systolic arrays.Comment: 22 pages, 9 figures, 2 appendice
    corecore