125 research outputs found

    Deep ocean influence on upper ocean baroclinic instability saturation

    Full text link
    In this paper we extend earlier results regarding the effects of the lower layer of the ocean (below the thermocline) on the baroclinic instability within the upper layer (above the thermocline). We confront quasigeostrophic baroclinic instability properties of a 2.5-layer model with those of a 3-layer model with a very thick deep layer, which has been shown to predict spectral instability for basic state parameters for which the 2.5-layer model predicts nonlinear stability. We compute and compare maximum normal-mode perturbation growth rates, as well as rigorous upper bounds on the nonlinear growth of perturbations to unstable basic states, paying particular attention to the region of basic state parameters where the stability properties of the 2.5- and 3-layer model differ substantially. We found that normal-mode perturbation growth rates in the 3-layer model tend to maximize in this region. We also found that the size of state space available for eddy-amplitude growth tends to minimize in this same region. Moreover, we found that for a large spread of parameter values in this region the latter size reduces to only a small fraction of the total enstrophy of the system, thereby allowing us to make assessments of the significance of the instabilities.Comment: To appear \emph{in} O. U. Velasco-Fuentes et al. (eds.), \textit{Nonlinear Processes in Geophysical Fluid Dynamics}, Kluwer Academi

    Coherent water transport across the South Atlantic

    Full text link
    The role of mesoscale eddies in transporting Agulhas leakage is investigated using a recent technique from nonlinear dynamical systems theory applied on geostrophic currents inferred from the over two-decade-long satellite altimetry record. Eddies are found to acquire material coherence away from the Agulhas retroflection, near the Walvis Ridge in the South Atlantic. Yearly, 1 to 4 coherent material eddies are detected with diameters ranging from 40 to 280 km. A total of 23 eddy cores of about 50 km in diameter and with at least 30\pct of their contents traceable into the Indian Ocean were found to travel across the subtropical gyre with minor filamentation. Only 1 eddy core was found to pour its contents on the North Brazil Current. While ability of eddies to carry Agulhas leakage northwestward across the South Atlantic is supported by our analysis, this is more restricted than suggested by earlier ring transport assessments.Comment: In pres

    Dissipative inertial transport patterns near coherent Lagrangian eddies in the ocean

    Full text link
    Recent developments in dynamical systems theory have revealed long-lived and coherent Lagrangian (i.e., material) eddies in incompressible, satellite-derived surface ocean velocity fields. Paradoxically, observed drifting buoys and floating matter tend to create dissipative-looking patterns near oceanic eddies, which appear to be inconsistent with the conservative fluid particle patterns created by coherent Lagrangian eddies. Here we show that inclusion of inertial effects (i.e., those produced by the buoyancy and size finiteness of an object) in a rotating two-dimensional incompressible flow context resolves this paradox. Specifically, we obtain that anticyclonic coherent Lagrangian eddies attract (repel) negatively (positively) buoyant finite-size particles, while cyclonic coherent Lagrangian eddies attract (repel) positively (negatively) buoyant finite-size particles. We show how these results explain dissipative-looking satellite-tracked surface drifter and subsurface float trajectories, as well as satellite-derived \emph{Sargassum} distributions.Comment: Submitted to \emph{Chaos} Focus Issue on Objective detection of Lagrangian Coherent Structures. Revised 23-Feb-1

    Enduring Lagrangian coherence of a Loop Current ring assessed using independent observations

    Get PDF
    Ocean flows are routinely inferred from low-resolution satellite altimetry measurements of sea surface height assuming a geostrophic balance. Recent nonlinear dynamical systems techniques have revealed that surface currents derived from altimetry can support mesoscale eddies with material boundaries that do not filament for many months, thereby representing effective transport mechanisms. However, the long-range Lagrangian coherence assessed for mesoscale eddy boundaries detected from altimetry is constrained by the impossibility of current altimeters to resolve ageostrophic submesoscale motions. These may act to prevent Lagrangian coherence from manifesting in the rigorous form described by the nonlinear dynamical systems theories. Here we use a combination of satellite ocean color and surface drifter trajectory data, rarely available simultaneously over an extended period of time, to provide observational evidence for the enduring Lagrangian coherence of a Loop Current ring detected from altimetry. We also seek indications of this behavior in the flow produced by a data-assimilative system which demonstrated ability to reproduce observed relative dispersion statistics down into the marginally submesoscale range. However, the simulated flow, total surface and subsurface or subsampled emulating altimetry, is not found to support the long-lasting Lagrangian coherence that characterizes the observed ring. This highlights the importance of the Lagrangian metrics produced by the nonlinear dynamical systems tools employed here in assessing model performance.Comment: In press in nature.com/Scientific Report

    Lagrangian dynamical geography of the Gulf of Mexico

    Full text link
    We construct a Markov-chain representation of the surface-ocean Lagrangian dynamics in a region occupied by the Gulf of Mexico (GoM) and adjacent portions of the Caribbean Sea and North Atlantic using satellite-tracked drifter trajectory data, the largest collection so far considered. From the analysis of the eigenvectors of the transition matrix associated with the chain, we identify almost-invariant attracting sets and their basins of attraction. With this information we decompose the GoM's geography into weakly dynamically interacting provinces, which constrain the connectivity between distant locations within the GoM. Offshore oil exploration, oil spill contingency planning, and fish larval connectivity assessment are among the many activities that can benefit from the dynamical information carried in the geography constructed here.Comment: Submitted to Scientific Report

    Zonal Jets as Transport Barriers in Planetary Atmospheres

    Get PDF
    The connection between transport barriers and potential vorticity (PV) barriers in PV-conserving flows is investigated with a focus on zonal jets in planetary atmospheres. A perturbed PV-staircase model is used to illustrate important concepts. This flow consists of a sequence of narrow eastward and broad westward zonal jets with a staircase PV structure; the PV-steps are at the latitudes of the cores of the eastward jets. Numerically simulated solutions to the quasigeostrophic PV conservation equation in a perturbed PV-staircase flow are presented. These simulations reveal that both eastward and westward zonal jets serve as robust meridional transport barriers. The surprise is that westward jets, across which the background PV gradient vanishes, serve as robust transport barriers. A theoretical explanation of the underlying barrier mechanism is provided. It is argued that transport barriers near the cores of westward zonal jets, across which the background PV gradient is small, are found in Jupiter's midlatitude weather layer and in the Earth's summer hemisphere subtropical stratosphere.Comment: Accepted for publication in JA
    corecore