18,959 research outputs found

    Novel Six-Quark Hidden-Color Dibaryon States in QCD

    Full text link
    The recent observation of a hadronic resonance d∗d^* in the proton-neutron system with isospin I=0I = 0 and spin-parity JP=3+J^P = 3^+ raises the possibility of producing other novel six-quark dibaryon configurations allowed by QCD. A dramatic example of an exotic six-quark color-singlet system is the charge Q=+4Q=+4, isospin I=3, Iz=+3I^z=+3 ∣uuuuuu>|uuuuuu> state which couples strongly to Δ++\Delta^{++} + Δ++.\Delta^{++} . The width and decay properties of such six-quark resonances could be regarded as manifestations of "hidden-color" six-quark configurations, a first-principle prediction of QCD -- SU(3)-color gauge theory for the deuteron distribution amplitude. Other implications and possible future experiments are discussed

    Limit Theorems For Quantum Walks Associated with Hadamard Matrices

    Full text link
    We study a one-parameter family of discrete-time quantum walk models on the line and in the xy-plane associated with the Hadamard walk. Weak convergence in the long-time limit of all moments of the walker's pseudo-velocity on the line and in the xy-plane is proved. Symmetrization on the line and in the xy-plane is theoretically investigated, leading to the resolution of the Konno-Namiki-Soshi conjecture in the special case of symmetrization of the unbiased Hadamard walk on the line . A necessary condition for the existence of a phenomenon known as localization is given

    Search for Variable Stars in the Globular Cluster M3

    Get PDF
    We describe here results of a photometric time-sequence survey of the globular cluster M3 (NGC 5272), in a search for contact and detached eclipsing binary stars. We have discovered only one likely eclipsing binary and one SX Phe type star in spite of monitoring 4077 stars with V<20.0V<20.0 and observing 25 blue stragglers. The newly identified SX Phe star, V237, shows a light curve with a variable amplitude. Variable V238 shows variability either with a period of 0.49 d or with a period of 0.25 d. On the cluster colour-magnitude diagram, the variable occupies a position a few hundredths of magnitude to the blue of the base of the red giant branch. V238 is a likely descendent of a binary blue straggler. As a side result we obtained high quality data for 42 of the previously known RR Lyrae variables, including 33 of Bailey type ab, 7 type c and 2 double-mode pulsators. We used equations that relate the physical properties of RRc stars to their pulsation periods and Fourier parameters to derive masses, luminosities, temperatures and helium parameters for five of the RRc stars. One of the RRd stars (V79) has switched modes. In previous studies, it was classified as RRab, but our observations show that it is an RRd star with the first overtone mode dominating. This indicates blueward evolution on the horizontal branch.Comment: 21 pages including 14 figures, Latex, requires mn.sty, psfig.sty. Submitted, MNRA

    Regularity and stability of electrostatic solutions in Kaluza-Klein theory

    Get PDF
    We investigate the family of electrostatic spherically symmetric solutions of the five-dimensional Kaluza-Klein theory. Besides black holes and wormholes, a new class of geodesically complete solutions is identified. A monopole perturbation is carried out, enabling us to prove analytically the stability of a large class of solutions, including all black holes and neutral solutions.Comment: 2 pages, "mprocl.sty" with LATEX 2.09, contribution to the 9th Marcel Grossmann meeting (MG9), Rome, July 200

    Bounds on the force between black holes

    Full text link
    We treat the problem of N interacting, axisymmetric black holes and obtain two relations among physical parameters of the system including the force between the black holes. The first relation involves the total mass, the angular momenta, the distances and the forces between the black holes. The second one relates the angular momentum and area of each black hole with the forces acting on it.Comment: 13 pages, no figure

    Electrostatic solutions in Kaluza-Klein theory: geometry and stability

    Get PDF
    We investigate the family of electrostatic spherically symmetric solutions of the five-dimensional Kaluza-Klein theory. Both charged and neutral cases are considered. The analysis of the solutions, through their geometrical properties, reveals the existence of black holes, wormholes and naked singularities. A new class of regular solutions is identified. A monopole perturbation study of all these solutions is carried out, enabling us to prove analytically the stability of large classes of solutions. In particular, the black hole solutions are stable, while for the regular solutions the stability analysis leads to an eigenvalue problem.Comment: Latex file, 21 page

    Stripe formation in horizontally oscillating granular suspensions

    Full text link
    We present the results of an experimental study of pattern formation in horizontally oscillating granular suspensions. Starting from a homogeneous state, the suspension turns into a striped pattern within a specific range of frequencies and amplitudes of oscillation. We observe an initial development of layered structures perpendicular to the vibration direction and a gradual coarsening of the stripes. However, both processes gradually slow down and eventually saturate. The probability distribution of the stripe width approaches a nonmonotonic steady-state form which can be approximated by a Poisson distribution. We observe similar structures in MD simulations of soft spherical particles coupled to the motion of the surrounding fluid.Comment: 7 pages, 8 figures, to appear in Europhys. Lett. (2014

    Observing the evaporation transition in vibro-fluidized granular matter

    Full text link
    By shaking a sand box the grains on the top start to jump giving the picture of evaporating a sand bulk, and a gaseous transition starts at the surface granular matter (GM) bed. Moreover the mixture of the grains in the whole bed starts to move in a cooperative way which is far away from a Brownian description. In a previous work we have shown that the key element to describe the statistics of this behavior is the exclusion of volume principle, whereby the system obeys a Fermi configurational approach. Even though the experiment involves an archetypal non-equilibrium system, we succeeded in defining a global temperature, as the quantity associated to the Lagrange parameter in a maximum entropic statistical description. In fact in order to close our approach we had to generalize the equipartition theorem for dissipative systems. Therefore we postulated, found and measured a fundamental dissipative parameter, written in terms of pumping and gravitational energies, linking the configurational entropy to the collective response for the expansion of the centre of mass (c.m.) of the granular bed. Here we present a kinetic approach to describe the experimental velocity distribution function (VDF) of this non-Maxwellian gas of macroscopic Fermi-like particles (mFp). The evaporation transition occurs mainly by jumping balls governed by the excluded volume principle. Surprisingly in the whole range of low temperatures that we measured this description reveals a lattice-gas, leading to a packing factor, which is independent of the external parameters. In addition we measure the mean free path, as a function of the driving frequency, and corroborate our prediction from the present kinetic theory.Comment: 6 pages, 4 figures, submitted for publication September 1st, 200

    Cluster, Classify, Regress: A General Method For Learning Discountinous Functions

    Full text link
    This paper presents a method for solving the supervised learning problem in which the output is highly nonlinear and discontinuous. It is proposed to solve this problem in three stages: (i) cluster the pairs of input-output data points, resulting in a label for each point; (ii) classify the data, where the corresponding label is the output; and finally (iii) perform one separate regression for each class, where the training data corresponds to the subset of the original input-output pairs which have that label according to the classifier. It has not yet been proposed to combine these 3 fundamental building blocks of machine learning in this simple and powerful fashion. This can be viewed as a form of deep learning, where any of the intermediate layers can itself be deep. The utility and robustness of the methodology is illustrated on some toy problems, including one example problem arising from simulation of plasma fusion in a tokamak.Comment: 12 files,6 figure

    Effect of optical disorder and single defects on the expansion of a Bose-Einstein condensate in a one-dimensional waveguide

    Full text link
    We investigate the one-dimensional expansion of a Bose-Einstein condensate in an optical guide in the presence of a random potential created with optical speckles. With the speckle the expansion of the condensate is strongly inhibited. A detailed investigation has been carried out varying the experimental conditions and checking the expansion when a single optical defect is present. The experimental results are in good agreement with numerical calculations based on the Gross-Pitaevskii equation.Comment: 5 pages, 5 figure
    • 

    corecore