32,429 research outputs found

    Anomalies in Universal Intensity Scaling in Ultrarelativistic Laser-Plasma Interactions

    Full text link
    Laser light incident on targets at intensities such that the electron dynamics is ultrarelativistic gives rise to a harmonic power spectrum extending to high orders and characterized by a relatively slow decay with the harmonic number m that follows a power law dependence, m^{-p}. Relativistic similarity theory predicts a universal value for p = 8/3 up to some cut-off m = m*. The results presented in this work suggest that under conditions in which plasma effects contribute to the emission spectrum, the extent of this contribution may invalidate the concept of universal decay. We report a decay with harmonic number in the ultrarelativistic range characterised by an index 5/3 < p < 7/3, significantly weaker than that predicted by the similarity model.Comment: 5 pages, 4 figure

    Inhibition of Fructose-1,6-bisphosphatase by Aminoimidazole Carboxamide Ribotide Prevents Growth of Salmonella enterica purH Mutants on Glycerol

    Get PDF
    The enzyme fructose-1,6-bisphosphatase (FBP) is key regulatory point in gluconeogenesis. Mutants of Salmonella enterica lacking purH accumulate 5-amino-4-imidazole carboxamide ribotide (AICAR) and are unable to utilize glycerol as sole carbon and energy sources. The work described here demonstrates this lack of growth is due to inhibition of FBP by AICAR. Mutant alleles of fbp that restore growth on glycerol encode proteins resistant to inhibition by AICAR and the allosteric regulator AMP. This is the first report of biochemical characterization of substitutions causing AMP resistance in a bacterial FBP. Inhibition of FBP activity by AICAR occurs at physiologically relevant concentrations and may represent a form of regulation of gluconeogenic flux in Salmonella enterica

    Supersonic quantum communication

    Full text link
    When locally exciting a quantum lattice model, the excitation will propagate through the lattice. The effect is responsible for a wealth of non-equilibrium phenomena, and has been exploited to transmit quantum information through spin chains. It is a commonly expressed belief that for local Hamiltonians, any such propagation happens at a finite "speed of sound". Indeed, the Lieb-Robinson theorem states that in spin models, all effects caused by a perturbation are limited to a causal cone defined by a constant speed, up to exponentially small corrections. In this work we show that for translationally invariant bosonic models with nearest-neighbor interactions, this belief is incorrect: We prove that one can encounter excitations which accelerate under the natural dynamics of the lattice and allow for reliable transmission of information faster than any finite speed of sound. The effect is only limited by the model's range of validity (eventually by relativity). It also implies that in non-equilibrium dynamics of strongly correlated bosonic models far-away regions may become quickly entangled, suggesting that their simulation may be much harder than that of spin chains even in the low energy sector.Comment: 4+3 pages, 1 figure, some material added, typographic error fixe

    Raman gain against a background of non-thermal ion fluctuations in a plasma

    Get PDF
    A complex stimulated Raman scattering event against a background of non-thermal ion acoustic waves in an inhomogeneous plasma is described. We obtain analytic forms for the Raman gain due to a five-wave interaction consisting of conventional three-wave Raman scattering followed by the decay of the Raman Langmuir wave into a second Langmuir wave (or a second scattered light wave) and an ion acoustic wave. Very modest levels of ion waves produce a. significant effect on Raman convective gain. A combination of plasma inhomogeneity and suprathermal ion fluctuations may offer a means for the control of Raman gain

    Quantum computing with alkaline earth atoms

    Get PDF
    We present a complete scheme for quantum information processing using the unique features of alkaline earth atoms. We show how two completely independent lattices can be formed for the 1^1S0_0 and 3^3P0_0 states, with one used as a storage lattice for qubits encoded on the nuclear spin, and the other as a transport lattice to move qubits and perform gate operations. We discuss how the 3^3P2_2 level can be used for addressing of individual qubits, and how collisional losses from metastable states can be used to perform gates via a lossy blockade mechanism.Comment: 4 pages, 3 figures, RevTeX

    Population structures in the SARA and SARB reference collections of Salmonella enterica according to MLST, MLEE and microarray hybridization

    Get PDF
    In the 1980's and 1990's, population genetic analyses based on Multilocus Enzyme Electrophoresis (MLEE) provided an initial overview of the genetic diversity of multiple bacterial species, including Salmonella enterica. The genetic diversity within S. enterica subspecies enterica according to MLEE is represented by the SARA and SARB reference collections, each consisting of 72 isolates, which have been extensively used for comparative analyses. MLEE has subsequently been replaced by Multilocus Sequence Typing (MLST). Our initial MLST results indicated that some strains within the SARB collection differed from their published descriptions. We therefore performed MLST on four versions of the SARB collection from different sources and one collection of SARA, and found that multiple isolates in SARB and SARA differ in serovar from their original description, and other SARB isolates differed between different sources. Comparisons with a global MLST database allowed a plausible reconstruction of the serovars of the original collection. MLEE, MLST and microarrays were largely concordant at recognizing closely related strains. MLST was particularly effective at recognizing discrete population genetic groupings while the two other methods provided hints of higher order relationships. However, quantitative pair-wise phylogenetic distances differed considerably between all three methods. Our results provide a translation dictionary from MLEE to MLST for the extant SARA and SARB collections which can facilitate genomic comparisons based on archival insights from MLEE

    Post Big Bang Processing of the Primordial Elements

    Get PDF
    We explore the Gnedin-Ostriker suggestion that a post-Big-Bang photodissociation process may modify the primordial abundances of the light elements. We consider several specific models and discuss the general features that are necessary (but not necessarily sufficient) to make the model work. We find that with any significant processing, the final D and 3^3He abundances, which are independent of their initial standard big bang nucleosynthesis (SBBN) values, rise quickly to a level several orders of magnitude above the observationally inferred primordial values. Solutions for specific models show that the only initial abundances that can be photoprocessed into agreement with observations are those that undergo virtually no processing and are already in agreement with observation. Thus it is unlikely that this model can work for any non-trivial case unless an artificial density and/or photon distribution is invoked.Comment: 12 page Latex file (AASTEX style). Tarred, gzipped, and uuencoded postscript files of seven figures. Also available (with ps file of paper) at ftp://www-physics.mps.ohio-state.edu/pub/nucex/phot
    • …
    corecore