7,920 research outputs found

    Crystal Structure and Magnetism of the Linear-Chain Copper Oxides Sr5Pb3-xBixCuO12

    Full text link
    The title quasi-1D copper oxides (0=< x =<0.4) were investigated by neutron diffraction and magnetic susceptibility studies. Polyhedral CuO4 units in the compounds were found to comprise linear-chains at inter-chain distance of approximately 10 A. The parent chain compound (x = 0), however, shows less anisotropic magnetic behavior above 2 K, although it is of substantially antiferromagnetic (mu_{eff}= 1.85 mu_{B} and Theta_{W} = -46.4 K) spin-chain system. A magnetic cusp gradually appears at about 100 K in T vs chi with the Bi substitution. The cusp (x = 0.4) is fairly characterized by and therefore suggests the spin gap nature at Delta/k_{B} ~ 80 K. The chain compounds hold electrically insulating in the composition range.Comment: To be published in PR

    The susceptibility and excitation spectrum of (VO)2_2P2_2O7_7 in ladder and dimer chain models

    Full text link
    We present numerical results for the magnetic susceptibility of a Heisenberg antiferromagnetic spin ladder, as a function of temperature and the spin-spin interaction strengths J⊥J_\perp and J∣∣J_{||}. These are contrasted with new bulk limit results for the dimer chain. A fit to the experimental susceptibility of the candidate spin-ladder compound vanadyl pyrophosphate, (VO)2_2P2_2O7_7, gives the parameters J⊥=7.82J_\perp = 7.82 meV and J∣∣=7.76J_{||} = 7.76 meV. With these values we predict a singlet-triplet energy gap of Egap=3.9E_{gap} = 3.9 meV, and give a numerical estimate of the ladder triplet dispersion relation ω(k)\omega(k). In contrast, a fit to the dimer chain model leads to J1=11.11J_1=11.11 meV and J2=8.02J_2=8.02 meV, which predicts a gap of Egap=4.9E_{gap} = 4.9 meV.Comment: 16 pages, 6 figures available upon request, RevTex 3.0, preprint ORNL-CCIP-94-04 / RAL-94-02

    Spin Gap of S=1/2 Heisenberg Model on Distorted Diamond Chain

    Full text link
    We study the spin gap of the S=1/2 Heisenberg model on the distorted diamond chain, which is recently proposed to represent magnetic properties of Cu_3 Cl_6 (H_2 O)_2 2H_8 C_4 SO_2. This model is composed of stacked trimers and has three kinds of exchange interactions J_1, J_2 and J_3. Using the numerical diagonalization, we obtain a contour map of the spin gap in the J_2/J_1-J_3/J_1 plane. We argue possible values of the exchange constants based on the contour map and the observed value of the spin gap.Comment: 2 pages, 4 figure

    Resonance production from jet fragmentation

    Get PDF
    Short lived resonances are sensitive to the medium properties in heavy-ion collisions. Heavy hadrons have larger probability to be produced within the quark gluon plasma phase due to their short formation times. Therefore heavy mass resonances are more likely to be affected by the medium, and the identification of early produced resonances from jet fragmentation might be a viable option to study chirality. The high momentum resonances on the away-side of a triggered di-jet are likely to be the most modified by the partonic or early hadronic medium. We will discuss first results of triggered hadron-resonance correlations in Cu+Cu heavy ion collisions.Comment: Hot Quarks Colorado 2008 Proceedings, 4 pages 5 figure

    Stability of temporal statistics in Transition Path Theory with sparse data

    Full text link
    Transition Path Theory (TPT) provides a rigorous statistical characterization of the ensemble of trajectories connecting directly, i.e., without detours, two disconnected (sets of) states in a Markov chain, a stochastic process that undergoes transitions from one state to another with probability depending on the state attained in the previous step. Markov chains can be constructed using trajectory data via counting of transitions between cells covering the domain spanned by trajectories. With sparse trajectory data, the use of regular cells is observed to result in unstable estimates of the total duration of transition paths. Using Voronoi cells resulting from k-means clustering of the trajectory data, we obtain stable estimates of this TPT statistic, which is generalized to frame the remaining duration of transition paths, a new TPT statistic suitable for investigating connectivity.Comment: Submitted to Chaos. Comments welcomed

    Proportion Regulation in Globally Coupled Nonlinear Systems

    Full text link
    As a model of proportion regulation in differentiation process of biological system, globally coupled activator-inhibitor systems are studied. Formation and destabilization of one and two cluster state are predicted analytically. Numerical simulations show that the proportion of units of clusters is chosen within a finite range and it is selected depend on the initial condition.Comment: 11 pages (revtex format) and 5 figures (PostScript)

    Magnetic excitations and effects of magnetic fields on the spin-Peierls transition in CuGeO3_3

    Full text link
    We analyze the magnetic excitations of a spin-1/2 antiferromagnetic Heisenberg model with alternating nearest neighbor interactions and uniform second neighbor interactions recently proposed to describe the spin-Peierls transition in CuGeO3_3. We show that there is good agreement between the calculated excitation dispersion relation and the experimental one. We have also shown that this model reproduces satisfactorily the experimental results for the magnetization vs. magnetic field curve and its saturation value. The model proposed also reproduces qualitatively some features of the magnetic phase diagram of this compound and the overall behavior of the magnetic specific heat in the presence of applied magnetic fields.Comment: 12 pages Revtex v2.0 + 4 figures postscripts include

    Study of the magnetic susceptibility in the spin-Peierls system CuGeO3_3

    Full text link
    We study numerically, using a one-dimensional Heisenberg model, the spin-Peierls transition in the linear Cu2+^{2+} spin-1/2 chains in the inorganic compound CuGeO3_3 which has been recently observed experimentally. We suggest that the magnetic susceptibility, the temperature dependence of the spin gap and the spin-Peierls transition temperature of this material can be reasonably described by including nearest and next nearest neighbor antiferromagnetic interactions along the chain. We estimate that the nearest neighbor exchange parameter J is approximately 160 K160\:\rm K, and that the next nearest neighbor exchange parameter is approximately 0.36 J0.36\:\rm J.Comment: 14 pages, Revtex v2.0, 4 figures available upon reques
    • …
    corecore