1,777 research outputs found
The cubic chessboard
We present a survey of recent results, scattered in a series of papers that
appeared during past five years, whose common denominator is the use of cubic
relations in various algebraic structures. Cubic (or ternary) relations can
represent different symmetries with respect to the permutation group S_3, or
its cyclic subgroup Z_3. Also ordinary or ternary algebras can be divided in
different classes with respect to their symmetry properties. We pay special
attention to the non-associative ternary algebra of 3-forms (or ``cubic
matrices''), and Z_3-graded matrix algebras. We also discuss the Z_3-graded
generalization of Grassmann algebras and their realization in generalized
exterior differential forms. A new type of gauge theory based on this
differential calculus is presented. Finally, a ternary generalization of
Clifford algebras is introduced, and an analog of Dirac's equation is
discussed, which can be diagonalized only after taking the cube of the
Z_3-graded generalization of Dirac's operator. A possibility of using these
ideas for the description of quark fields is suggested and discussed in the
last Section.Comment: 23 pages, dedicated to A. Trautman on the occasion of his 64th
birthda
General theory of instabilities for patterns with sharp interfaces in reaction-diffusion systems
An asymptotic method for finding instabilities of arbitrary -dimensional
large-amplitude patterns in a wide class of reaction-diffusion systems is
presented. The complete stability analysis of 2- and 3-dimensional localized
patterns is carried out. It is shown that in the considered class of systems
the criteria for different types of instabilities are universal. The specific
nonlinearities enter the criteria only via three numerical constants of order
one. The performed analysis explains the self-organization scenarios observed
in the recent experiments and numerical simulations of some concrete
reaction-diffusion systems.Comment: 21 pages (RevTeX), 8 figures (Postscript). To appear in Phys. Rev. E
(April 1st, 1996
Cellular automata approach to three-phase traffic theory
The cellular automata (CA) approach to traffic modeling is extended to allow
for spatially homogeneous steady state solutions that cover a two dimensional
region in the flow-density plane. Hence these models fulfill a basic postulate
of a three-phase traffic theory proposed by Kerner. This is achieved by a
synchronization distance, within which a vehicle always tries to adjust its
speed to the one of the vehicle in front. In the CA models presented, the
modelling of the free and safe speeds, the slow-to-start rules as well as some
contributions to noise are based on the ideas of the Nagel-Schreckenberg type
modelling. It is shown that the proposed CA models can be very transparent and
still reproduce the two main types of congested patterns (the general pattern
and the synchronized flow pattern) as well as their dependence on the flows
near an on-ramp, in qualitative agreement with the recently developed continuum
version of the three-phase traffic theory [B. S. Kerner and S. L. Klenov. 2002.
J. Phys. A: Math. Gen. 35, L31]. These features are qualitatively different
than in previously considered CA traffic models. The probability of the
breakdown phenomenon (i.e., of the phase transition from free flow to
synchronized flow) as function of the flow rate to the on-ramp and of the flow
rate on the road upstream of the on-ramp is investigated. The capacity drops at
the on-ramp which occur due to the formation of different congested patterns
are calculated.Comment: 55 pages, 24 figure
Stability Analysis of Optimal Velocity Model for Traffic and Granular Flow under Open Boundary Condition
We analyzed the stability of the uniform flow solution in the optimal
velocity model for traffic and granular flow under the open boundary condition.
It was demonstrated that, even within the linearly unstable region, there is a
parameter region where the uniform solution is stable against a localized
perturbation. We also found an oscillatory solution in the linearly unstable
region and its period is not commensurate with the periodicity of the car index
space. The oscillatory solution has some features in common with the
synchronized flow observed in real traffic.Comment: 4 pages, 6 figures. Typos removed. To appear in J. Phys. Soc. Jp
Microscopic features of moving traffic jams
Empirical and numerical microscopic features of moving traffic jams are
presented. Based on a single vehicle data analysis, it is found that within
wide moving jams, i.e., between the upstream and downstream jam fronts there is
a complex microscopic spatiotemporal structure. This jam structure consists of
alternations of regions in which traffic flow is interrupted and flow states of
low speeds associated with "moving blanks" within the jam. Empirical features
of the moving blanks are found. Based on microscopic models in the context of
three-phase traffic theory, physical reasons for moving blanks emergence within
wide moving jams are disclosed. Structure of moving jam fronts is studied based
in microscopic traffic simulations. Non-linear effects associated with moving
jam propagation are numerically investigated and compared with empirical
results.Comment: 19 pages, 12 figure
Interpreting the Wide Scattering of Synchronized Traffic Data by Time Gap Statistics
Based on the statistical evaluation of experimental single-vehicle data, we
propose a quantitative interpretation of the erratic scattering of flow-density
data in synchronized traffic flows. A correlation analysis suggests that the
dynamical flow-density data are well compatible with the so-called jam line
characterizing fully developed traffic jams, if one takes into account the
variation of their propagation speed due to the large variation of the netto
time gaps (the inhomogeneity of traffic flow). The form of the time gap
distribution depends not only on the density, but also on the measurement cross
section: The most probable netto time gap in congested traffic flow upstream of
a bottleneck is significantly increased compared to uncongested freeway
sections. Moreover, we identify different power-law scaling laws for the
relative variance of netto time gaps as a function of the sampling size. While
the exponent is -1 in free traffic corresponding to statistically independent
time gaps, the exponent is about -2/3 in congested traffic flow because of
correlations between queued vehicles.Comment: For related publications see http://www.helbing.or
Examples of derivation-based differential calculi related to noncommutative gauge theories
Some derivation-based differential calculi which have been used to construct
models of noncommutative gauge theories are presented and commented. Some
comparisons between them are made.Comment: 22 pages, conference given at the "International Workshop in honour
of Michel Dubois-Violette, Differential Geometry, Noncommutative Geometry,
Homology and Fundamental Interactions". To appear in a special issue of
International Journal of Geometric Methods in Modern Physic
Motions and world-line deviations in Einstein-Maxwell theory
We examine the motion of charged particles in gravitational and
electro-magnetic background fields. We study in particular the deviation of
world lines, describing the relative acceleration between particles on
different space-time trajectories. Two special cases of background fields are
considered in detail: (a) pp-waves, a combination of gravitational and
electro-magnetic polarized plane waves travelling in the same direction; (b)
the Reissner-Nordstr{\o}m solution. We perform a non-trivial check by computing
the precession of the periastron for a charged particle in the
Reissner-Nordstr{\o}m geometry both directly by solving the geodesic equation,
and using the world-line deviation equation. The results agree to the order of
approximation considered.Comment: 23 pages, no figure
Derivation, Properties, and Simulation of a Gas-Kinetic-Based, Non-Local Traffic Model
We derive macroscopic traffic equations from specific gas-kinetic equations,
dropping some of the assumptions and approximations made in previous papers.
The resulting partial differential equations for the vehicle density and
average velocity contain a non-local interaction term which is very favorable
for a fast and robust numerical integration, so that several thousand freeway
kilometers can be simulated in real-time. The model parameters can be easily
calibrated by means of empirical data. They are directly related to the
quantities characterizing individual driver-vehicle behavior, and their optimal
values have the expected order of magnitude. Therefore, they allow to
investigate the influences of varying street and weather conditions or freeway
control measures. Simulation results for realistic model parameters are in good
agreement with the diverse non-linear dynamical phenomena observed in freeway
traffic.Comment: For related work see
http://www.theo2.physik.uni-stuttgart.de/helbing.html and
http://www.theo2.physik.uni-stuttgart.de/treiber.htm
Z-graded differential geometry of quantum plane
In this work, the Z-graded differential geometry of the quantum plane is
constructed. The corresponding quantum Lie algebra and its Hopf algebra
structure are obtained. The dual algebra, i.e. universal enveloping algebra of
the quantum plane is explicitly constructed and an isomorphism between the
quantum Lie algebra and the dual algebra is given.Comment: 17 page
- …