We present a survey of recent results, scattered in a series of papers that
appeared during past five years, whose common denominator is the use of cubic
relations in various algebraic structures. Cubic (or ternary) relations can
represent different symmetries with respect to the permutation group S_3, or
its cyclic subgroup Z_3. Also ordinary or ternary algebras can be divided in
different classes with respect to their symmetry properties. We pay special
attention to the non-associative ternary algebra of 3-forms (or ``cubic
matrices''), and Z_3-graded matrix algebras. We also discuss the Z_3-graded
generalization of Grassmann algebras and their realization in generalized
exterior differential forms. A new type of gauge theory based on this
differential calculus is presented. Finally, a ternary generalization of
Clifford algebras is introduced, and an analog of Dirac's equation is
discussed, which can be diagonalized only after taking the cube of the
Z_3-graded generalization of Dirac's operator. A possibility of using these
ideas for the description of quark fields is suggested and discussed in the
last Section.Comment: 23 pages, dedicated to A. Trautman on the occasion of his 64th
birthda