646 research outputs found

    The Trees of Texas--An Illustrated Manual of the Native and Introduced Trees of the State

    Get PDF
    Mode of access: Internet

    Simulation of Natural Tornado Genesis and Evolution from an Initial Instability Profile

    Get PDF
    A likely mechanism for the little-understood tornado genesis is proposed and its numerical implementation is presented. The Burgers-Rott vortex with its axis in the vertical direction is introduced as an instability mechanism, and the flow field then evolves under the influence of the atmospheric pressure, temperature and density variations with altitude. Buoyancy effects are implemented using the Boussinesq model. Results are presented and discussed for a set of conditions including mesh type and size, different turbulence models, and a few different boundary conditions. Post-processed results of the transient simulations including animations contain a wealth of information to help analyze tornado behavior. Velocity contours, pressure contours, vorticity contours, streamlines, and iso-surfaces show the evolution of a complex flow field possessing many characteristics of a tornado. At longer times from the start, the flow field becomes more asymmetric with the vortex core becoming more twisted, and the eye of the vortex drifting away from the axis of the computational domain. The single initial vortex then transitions into multiple vortices of varying size and orientation. These high Reynolds number (Re ~109) simulation results show flow fields that resemble highly unsteady, massively separated turbulent flows with eddies at a wide range of spatial scales

    ON THE COMBINATION OF KERNELS FOR SUPPORT VECTOR CLASSIFIERS

    Get PDF
    The problem of combining different sources of information arises in several situations, for instance, the classification of data with asymmetric similarity matrices or the construction of an optimal classifier from a collection of kernels. Often, each source of information can be expressed as a kernel (similarity) matrix and, therefore, a collection of kernels is available. In this paper we propose a new class of methods in order to produce, for classification purposes, an unique and optimal kernel. Then, the constructed kernel is used to train a Support Vector Machine (SVM). The key ideas within the kernel construction are two: the quantification, relative to the classification labels, of the difference of information among the kernels; and the extension of the concept of linear combination of kernels to the concept of functional (matrix) combination of kernels. The proposed methods have been successfully evaluated and compared with other powerful classifiers and kernel combination techniques on a variety of artificial and real classification problems.

    AN INTRODUCTORY INVESTIGATION OF DUST DEVILS ON MARS: COMPUTATIONAL FLUID DYNAMICS MODELING

    Get PDF
    This report investigates the flow characteristics of tornado like vortices which can be used to describe an array of axisymmetric rotating vertical columns of fluid such as dust devils, steam devils and tornadoes. These vortices have been recreated within vortex chambers in research facilities, but in focus of this report the investigation is conducted through numerical simulations using the Computational Fluid Dynamics (CFD) software package provided by ANSYS. By varying the main governing nondimensional parameter of swirl ratio through the computational domain’s boundary conditions, different flow characteristics appear which confirm theories presented in previous papers. This enables the research conducted in this report to be used as a template for further, more in-depth, investigations for different circumstances such as dust devils on Mars with their associated different conditions including gas composition, presence of possible liquid and solid phases, pressure, and temperature

    Creep-Fatigue Relationsihps in Electroactive Polymer Systems and Predicted Effects in an Actuator Design

    Get PDF
    The paper concerns the time-dependent behavior of electroactive polymers (EAP) and their use in advanced intelligent structures for space exploration. Innovative actuator design for low weight and low power valves required in small plants planned for use on the moon for chemical analysis is discussed. It is shown that in-depth understanding of cyclic loading effects observed through accelerated creep rates due to creep-fatigue interaction in polymers is critical in terms of proper functioning of EAP based actuator devices. In the paper, an overview of experimental results concerning the creep properties and cyclic creep response of a thin film piezoelectric polymer polyvinylidene fluoride (PVDF) is presented. The development of a constitutive creep-fatigue interaction model to predict the durability and service life of electroactive polymers is discussed. A novel method is proposed to predict damage accumulation and fatigue life of polymers under oyclic loading conditions in the presence of creep. The study provides a basis for ongoing research initiatives at the NASA Kennedy Space Center in the pursuit of new technologies using EAP as active elements for lunar exploration systems
    • …
    corecore