42 research outputs found
Increased GABAA Receptor ε-Subunit Expression on Ventral Respiratory Column Neurons Protects Breathing during Pregnancy
GABAergic signaling is essential for proper respiratory function. Potentiation of this signaling with allosteric modulators such as anesthetics, barbiturates, and neurosteroids can lead to respiratory arrest. Paradoxically, pregnant animals continue to breathe normally despite nearly 100-fold increases in circulating neurosteroids. ε subunit-containing GABAARs are insensitive to positive allosteric modulation, thus we hypothesized that pregnant rats increase ε subunit-containing GABAAR expression on brainstem neurons of the ventral respiratory column (VRC). In vivo, pregnancy rendered respiratory motor output insensitive to otherwise lethal doses of pentobarbital, a barbiturate previously used to categorize the ε subunit. Using electrode array recordings in vitro, we demonstrated that putative respiratory neurons of the preBötzinger Complex (preBötC) were also rendered insensitive to the effects of pentobarbital during pregnancy, but unit activity in the VRC was rapidly inhibited by the GABAAR agonist, muscimol. VRC unit activity from virgin and post-partum females was potently inhibited by both pentobarbital and muscimol. Brainstem ε subunit mRNA and protein levels were increased in pregnant rats, and GABAAR ε subunit expression co-localized with a marker of rhythm generating neurons (neurokinin 1 receptors) in the preBötC. These data support the hypothesis that pregnancy renders respiratory motor output and respiratory neuron activity insensitive to barbiturates, most likely via increased ε subunit-containing GABAAR expression on respiratory rhythm-generating neurons. Increased ε subunit expression may be critical to preserve respiratory function (and life) despite increased neurosteroid levels during pregnancy
The Transient Receptor Potential Ion Channel TRPV6 Is Expressed at Low Levels in Osteoblasts and Has Little Role in Osteoblast Calcium Uptake
Background: TRPV6 ion channels are key mediators of regulated transepithelial absorption of Ca2+ within the small intestine. Trpv6-/- mice were reported to have lower bone density than wild-type littermates and significant disturbances in calcium homeostasis that suggested a role for TRPV6 in osteoblasts during bone formation and mineralization. TRPV6 and molecules related to transepithelial Ca2+ transport have been reported to be expressed at high levels in human and mouse osteoblasts.
Results: Transmembrane ion currents in whole cell patch clamped SaOS-2 osteoblasts did not show sensitivity to ruthenium red, an inhibitor of TRPV5/6 ion channels, and 45Ca uptake was not significantly affected by ruthenium red in either SaOS-2 (P = 0.77) or TE-85 (P = 0.69) osteoblastic cells. In contrast, ion currents and 45Ca uptake were both significantly affected in a human bronchial epithelial cell line known to express TRPV6. TRPV6 was expressed at lower levels in osteoblastic cells than has been reported in some literature. In SaOS-2 TRPV6 mRNA was below the assay detection limit; in TE-85 TRPV6 mRNA was detected at 6.90±1.9 × 10−5 relative to B2M. In contrast, TRPV6 was detected at 7.7±3.0 × 10−2 and 2.38±0.28 × 10−4 the level of B2M in human carcinoma-derived cell lines LNCaP and CaCO-2 respectively. In murine primary calvarial osteoblasts TRPV6 was detected at 3.80±0.24 × 10−5 relative to GAPDH, in contrast with 4.3±1.5 × 10−2 relative to GAPDH in murine duodenum. By immunohistochemistry, TRPV6 was expressed mainly in myleocytic cells of the murine bone marrow and was observed only at low levels in murine osteoblasts, osteocytes or growth plate cartilage.
Conclusions: TRPV6 is expressed only at low levels in osteoblasts and plays little functional role in osteoblastic calcium uptake
Pseudorabies Virus Infection Alters Neuronal Activity and Connectivity In Vitro
Alpha-herpesviruses, including human herpes simplex virus 1 & 2, varicella zoster virus and the swine pseudorabies virus (PRV), infect the peripheral nervous system of their hosts. Symptoms of infection often include itching, numbness, or pain indicative of altered neurological function. To determine if there is an in vitro electrophysiological correlate to these characteristic in vivo symptoms, we infected cultured rat sympathetic neurons with well-characterized strains of PRV known to produce virulent or attenuated symptoms in animals. Whole-cell patch clamp recordings were made at various times after infection. By 8 hours of infection with virulent PRV, action potential (AP) firing rates increased substantially and were accompanied by hyperpolarized resting membrane potentials and spikelet-like events. Coincident with the increase in AP firing rate, adjacent neurons exhibited coupled firing events, first with AP-spikelets and later with near identical resting membrane potentials and AP firing. Small fusion pores between adjacent cell bodies formed early after infection as demonstrated by transfer of the low molecular weight dye, Lucifer Yellow. Later, larger pores formed as demonstrated by transfer of high molecular weight Texas red-dextran conjugates between infected cells. Further evidence for viral-induced fusion pores was obtained by infecting neurons with a viral mutant defective for glycoprotein B, a component of the viral membrane fusion complex. These infected neurons were essentially identical to mock infected neurons: no increased AP firing, no spikelet-like events, and no electrical or dye transfer. Infection with PRV Bartha, an attenuated circuit-tracing strain delayed, but did not eliminate the increased neuronal activity and coupling events. We suggest that formation of fusion pores between infected neurons results in electrical coupling and elevated firing rates, and that these processes may contribute to the altered neural function seen in PRV-infected animals
Firing properties of identified superior laryngeal neurons in the nucleus ambiguus in the rat
Superior laryngeal motoneurons control muscles in the larynx and recent work has shown they also have axon collaterals that project to cardiac vagal neurons in the nucleus ambiguus. The present study was undertaken to identify and examine the firing properties of superior laryngeal neurons (SLNs) in the rat. SLNs typically fired spontaneously and repetitively at a rate of 4-7 Hz. The firing was continuous and showed little bursting activity. Firing evoked afterhyperpolarizations were insensitive to apamin but blocked by charybdotoxin. The voltage-gated currents in SLNs consist of a TTX-sensitive Na current and a 4-aminopyridine sensitive K current. It is likely that the activity of these neurons not only control respiratory laryngeal muscles, but may also provide an interaction between the respiratory system and the control of the heart rate. © 2001 Elsevier Science Ireland Ltd
Arginine vasopressin enhances GABAergic inhibition of cardiac parasympathetic neurons in the nucleus ambiguus
Previous studies have shown that arginine vasopressin is an important neuropeptide that can modulate the reflex control of blood pressure and heart rate. The nucleus ambiguus, where cardiac parasympathetic neurons are located, receives dense arginine vasopressin projections. However the mechanisms by which arginine vasopressin alters cardiac parasympathetic activity are unknown. We tested the hypothesis that arginine vasopressin can alter the activity of cardiac parasympathetic neurons by altering the spontaneous GABAergic input to these neurons. Experiments were conducted using whole cell patch clamp recordings of cardiac parasympathetic neurons in an in vitro slice preparation in rats. The results of this study demonstrate that arginine vasopressin increases the frequency and amplitude of GABAergic inhibitory post-synaptic currents in cardiac parasympathetic neurons. Arginine vasopressin did not alter the GABAergic currents evoked by exogenous application of GABA. Similarly, in the presence of tetrodotoxin, arginine vasopressin did not alter the frequency, amplitude or decay time of GABAergic miniature synaptic events evoked by high osmolarity. These results indicate that arginine vasopressin likely acts on neurons precedent to cardiac parasympathetic neurons and that arginine vasopressin likely acts not at the synaptic terminal but at the soma or dendrites of the precedent neuron. Oxytocin and agonists for the V 2-arginine vasopressin and V 1b-arginine vasopressin receptors had no effect. By contrast, the arginine vasopressin-evoked responses were completely abolished by a selective V 1a-arginine vasopressin receptor antagonist indicating arginine vasopressin responses are mediated by V 1a-arginine vasopressin receptors. We conclude that the V 1a-arginine vasopressin receptor-mediated increase in frequency and amplitude of inhibitory GABAergic activity to cardiac parasympathetic neurons may be at least one mechanism by which central arginine vasopressin may increase heart rate and inhibit reflex bradycardia. © 2002 IBRO. Published by Elsevier Science Ltd. All rights reserved
Endomorphin-2 inhibits GABAergic inputs to cardiac parasympathetic neurons in the nucleus ambiguus
The nucleus ambiguus is an area containing cardiac vagal neurons, from which originates most of the parasympathetic control regulating heart rate and cardiac function. GABAergic pathways to these neurons have recently been described, yet modulation of this GABAergic input and its impact upon cardiac vagal neurons is unknown. The nucleus ambiguus has been shown to contain μ-opioid receptors and endomorphin-1 and endomorphin-2, the endogenous peptide ligands for the μ-receptor, whilst microinjections of opioids in the ambiguus area evoke bradycardia. The present study therefore examined the effects of endomorphin-1, endomorphin-2 and DAMGO (a synthetic, μ-selective agonist) on spontaneous GABAergic IPSCs in cardiac parasympathetic neurons. Only endomorphin-2 (100 μM) produced a significant inhibition, of both the frequency (-22.8%) and the amplitude (-30.5%) of the spontaneous IPSCs in cardiac vagal neurons. The inhibitory effects of endomorphin-2 were blocked by naloxonazine (10 μM), a selective μ1 receptor antagonist. Naloxonazine alone (10 μM) had a potentiating effect on the frequency of the GABAergic IPSCs (+161.43%) but not on the amplitude, indicating that GABA release to cardiac vagal neurons may be under tonic control of opioids acting at the μ1 receptor. Endomorphin-2 did not reduce the responses evoked by exogenous application of GABA. These results indicate that endomorphin-2 acts on μ1 receptors located on precedent neurons to decrease GABAergic input to cardiac vagal neurons located in the nucleus ambiguus. The subsequent increase in parasympathetic outflow to the heart may be one mechanism by which μ-selective opioids act to induce bradycardia. © 2002 IBRO. Published by Elsevier Science Ltd. All rights reserved