24 research outputs found

    Women in pediatric radiology

    Get PDF
    Women represent a significant proportion of pediatric radiologists in the United States, as shown on surveys by the American College of Radiology (ACR) and the Society for Pediatric Radiology (SPR). This review discusses the characteristics of this subgroup of specialists and issues uniquely related to them

    High-field MR imaging in pediatric congenital heart disease: Initial results

    Get PDF
    BackgroundComprehensive assessment of pediatric congenital heart disease (CHD) at any field strength mandates evaluation of both vascular and dynamic cardiac anatomy for which diagnostic quality contrast-enhanced magnetic resonance angiography (CEMRA) and cardiac cine are crucial.ObjectiveTo determine whether high-resolution (HR) CEMRA and steady-state free precession (SSFP) cine can be performed reliably at 3.0 T in children with CHD and to compare the image quality to similar techniques performed at 1.5 T.Materials and methodsTwenty-eight patients with a median age of 5 months and average weight 9.0 ± 7.8 kg with suspected or known CHD were evaluated at 3.0 T. SSFP cine (n = 86 series) and HR-CEMRA (n = 414 named vascular segments) were performed and images were scored for image quality and artifacts. The findings were compared to those of 28 patients with CHD of similar weight who were evaluated at 1.5 T.ResultsOverall image quality on HR-CEMRA was rated as excellent or good in 96% (397/414) of vascular segments at 3.0 T (k = 0.49) and in 94% (349/371) of vascular segments at 1.5 T (k = 0.36). Overall image quality of SSFP was rated excellent or good in 91% (78/86) of cine series at 3.0 T (k = 0.55) and in 81% (87/108) at 1.5 T (k = 0.47). Off-resonance artifact was common at both field strengths, varied over the cardiac cycle and was more prevalent at 3.0 T. At 3.0 T, off-resonance dark band artifact on SSFP cine was absent in 3% (3/86), mild in 69% (59/86), moderate in 27% (23/86) and severe in 1% (1/86) of images; at 1.5 T, dark band artifact was absent in 16% (17/108), mild in 69% (75/108), moderate in 12% (13/108) and severe in 3% (3/108) of cine images. The signal-to-noise ratio and contrast-to-noise ratio of both SSFP cine and HR-CEMRA images were significantly higher at 3.0 T than at 1.5 T (P < 0.001).ConclusionSignal-to-noise ratio and contrast-to-noise ratio of high-resolution contrast-enhanced magnetic resonance angiography and SSFP cine were higher at 3.0 T than at 1.5 T. Artifacts on SSFP cine were cardiac phase specific and more prevalent at 3.0 T such that frequency-tuning was required in one-third of exams. In neonates, high spatial resolution CEMRA was highly reliable in defining extracardiac vascular anatomy

    Estimated cumulative radiation dose from PET/CT in children with malignancies: a 5-year retrospective review

    Get PDF
    The increasing use of serial PET/CT scans in the management of pediatric malignancies raises the important consideration of radiation exposure in children. To estimate the cumulative radiation dose from PET/CT studies to children with malignancy and to compare with the data in literature. Two hundred forty-eight clinical PET/CT studies performed on 78 patients (50 boys/28 girls, 1.3 to 18 years old from December 2002 to October 2007) were retrospectively reviewed under IRB approval. The whole-body effective dose (ED) estimates for each child were obtained by estimating the effective dose from each PET/CT exam performed using the ImPACT Patient Dosimetry Calculator for CT and OLINDA for PET. The average number of PET/CT studies was 3.2 per child (range: 1 to 14 studies). The average ED of an individual CT study was 20.3 mSv (range: 2.7 to 54.2), of PET study was 4.6 mSv (range: 0.4 to 7.7) and of PET/CT study was 24.8 mSv (range: 6.2 to 60.7). The average cumulative radiation dose per patient from CT studies was 64.4 mSv (range: 2.7 to 326), from PET studies was 14.5 mSv (range: 2.8 to 73) and from PET/CT studies was 78.9 mSv (range: 6.2 to 399). The radiation exposure from serial PET/CT studies performed in pediatric malignancies was considerable; however, lower doses can be used for both PET and CT studies. The ALARA principle must be applied without sacrificing diagnostic information

    Graphic Representation of Skeletal Maturity Determinations

    No full text
    corecore