199 research outputs found

    Non-resonant direct p- and d-wave neutron capture by 12C

    Get PDF
    Discrete gamma-rays from the neutron capture state of 13C to its low-lying bound states have been measured using pulsed neutrons at En = 550 keV. The partial capture cross sections have been determined to be 1.7+/-0.5, 24.2+/-1.0, 2.0+/-0.4 and 1.0+/-0.4 microb for the ground (1/2-), first (1/2+), second (3/2-) and third (5/2+) excited states, respectively. From a comparison with theoretical predictions based on the non-resonant direct radiative capture mechanism, we could determine the spectroscopic factor for the 1/2+ state to be 0.80 +/- 0.04, free from neutron-nucleus interaction ambiguities in the continuum. In addition we have detected the contribution of the non-resonant d-wave capture component in the partial cross sections for transitions leading to the 1/2- and 3/2- states. While the s-wave capture dominates at En < 100 keV, the d-wave component turns out to be very important at higher energies. From the present investigation the 12C(n,gamma)13C reaction rate is obtained for temperatures in the range 10E+7 - 10E+10 K.Comment: Accepted for publication in Phys. Rev. C. - 16 pages + 8 figure

    Determination of the electromagnetic character of soft dipole modes solely based on quasicontinuous gamma spectroscopy

    Full text link
    We show that the combined analysis of the quasicontinuous gamma spectra from the (He-3,alpha) and the (n-thermal,2gamma) reactions gives the possibility to measure the electromagnetic character of soft dipole resonances. Two-step gamma-cascade spectra have been calculated, using level densities and radiative strength functions from the (He-3,alpha gamma) reaction. The calculations show that the intensity of the two-step cascades depends on the electromagnetic character of the soft dipole resonance under study. The difference reaches 40-100% which can be measured experimentally.Comment: 9 pages including 1 table and 2 figure

    Thermal and electromagnetic properties of 166-Er and 167-Er

    Full text link
    The primary gamma-ray spectra of 166-Er and 167-Er are deduced from the (3-He,alpha gamma) and (3-He,3-He' gamma) reaction, respectively, enabling a simultaneous extraction of the level density and the gamma-ray strength function. Entropy, temperature and heat capacity are deduced from the level density within the micro-canonical and the canonical ensemble, displaying signals of a phase-like transition from the pair-correlated ground state to an uncorrelated state at Tc=0.5 MeV. The gamma-ray strength function displays a bump around E-gamma=3 MeV, interpreted as the pygmy resonance.Comment: 21 pages including 2 tables and 11 figure

    Evolution of level density step structures from 56,57-Fe to 96,97-Mo

    Full text link
    Level densities have been extracted from primary gamma spectra for 56,57-Fe and 96,97-Mo nuclei using (3-He,alpha gamma) and (3-He,3-He') reactions on 57-Fe and 97-Mo targets. The level density curves reveal step structures above the pairing gap due to the breaking of nucleon Cooper pairs. The location of the step structures in energy and their shapes arise from the interplay between single-particle energies and seniority-conserving and seniority-non-conserving interactions.Comment: 9 pages, including 5 figure

    Measurement of the 2H(n,γ)3H reaction cross section between 10 and 550 keV

    Get PDF
    We have measured for the first time the cross section of the 2H(n,γ)3H reaction at an energy relevant to big-bang nucleosynthesis by employing a prompt discrete -ray detection method. The outgoing photons have been detected by means of anti-Compton NaI(Tl) spectrometers with a large signal-to-noise ratio. The resulting cross sections are 2.23±0.34,1.99±0.25, and 3.76±0.41µb at En=30.5,54.2, and 531 keV, respectively. At En=30.5 keV the cross section differs from the value reported previously by a factor of 2. Based on the present data the reaction rate has been obtained for temperatures in the range 107-1010 K. The astrophysical impact of the present result is discussed. The obtained cross sections are compared with a theoretical calculation based on the Faddeev approach, which includes meson exchange currents as well as a three-nucleon force

    Level densities and γ\gamma-strength functions in 148,149^{148,149}Sm

    Full text link
    The level densities and γ\gamma-strength functions of the weakly deformed 148^{148}Sm and 149^{149}Sm nuclei have been extracted. The temperature versus excitation energy curve, derived within the framework of the micro canonical ensemble, shows structures, which we associate with the break up of Cooper pairs. The nuclear heat capacity is deduced within the framework of both the micro canonical and the canonical ensemble. We observe negative heat capacity in the micro canonical ensemble whereas the canonical heat capacity exhibits an S-shape as function of temperature, both signals of a phase transition. The structures in the γ\gamma-strength functions are discussed in terms of the pygmy resonance and the scissors mode built on exited states. The samarium results are compared with data for the well deformed 161,162^{161,162}Dy, 166,167^{166,167}Er and 171,172^{171,172}Yb isotopes and with data from (n,γ\gamma)-experiments and giant dipole resonance studies.Comment: 12 figure

    Level density and thermal properties in rare earth nuclei

    Full text link
    A convergent method to extract the nuclear level density and the gamma-ray strength function from primary gamma-ray spectra has been established. Thermodynamical quantities have been obtained within the microcanonical and canonical ensemble theory. Structures in the caloric curve and in the heat capacity curve are interpreted as fingerprints of breaking of Cooper pairs and quenching of pairing correlations. The strength function can be described using models and common parameterizations for the E1, M1 and pygmy resonance strength. However, a significant decrease of the pygmy resonance strength at finite temperatures has been observed.Comment: 15 pages including 8 figures. Proceedings article for the conference Nuclear Structure and Related Topics, Dubna, Russia, June 6-10, 200

    Gamma-ray strength function and pygmy resonance in rare earth nuclei

    Full text link
    The gamma-ray strength function for gamma energies in the 1-7 MeV region has been measured for 161,162-Dy and 171,172-Yb using the (3-He,alpha gamma) reaction. Various models are tested against the observed gamma-ray strength functions. The best description is based on the Kadmenskii, Markushev and Furman E1 model with constant temperature and the Lorentzian M1 model. A gamma-ray bump observed at E_gamma=3 MeV is interpreted as the so-called pygmy resonance, which has also been observed previously in (n,gamma) experiments. The parameters for this resonance have been determined and compared to the available systematics.Comment: 11 pages, including 4 figures and 2 table

    Concentration of electric dipole strength below the neutron separation energy in N = 82 nuclei

    Full text link
    The semi-magic nuclei Ba-138, Ce-140, and Sm-144 have been investigated in photon scattering experiments up to an excitation energy of about 10 MeV. The distribution of the electric dipole strength shows a resonance like structure at energies between 5.5 and 8 MeV exhausting up to 1% of the isovector E1 Energy Weighted Sum Rule.Comment: 10 pages, 3 figure
    corecore