203 research outputs found
Non-resonant direct p- and d-wave neutron capture by 12C
Discrete gamma-rays from the neutron capture state of 13C to its low-lying
bound states have been measured using pulsed neutrons at En = 550 keV. The
partial capture cross sections have been determined to be 1.7+/-0.5,
24.2+/-1.0, 2.0+/-0.4 and 1.0+/-0.4 microb for the ground (1/2-), first (1/2+),
second (3/2-) and third (5/2+) excited states, respectively. From a comparison
with theoretical predictions based on the non-resonant direct radiative capture
mechanism, we could determine the spectroscopic factor for the 1/2+ state to be
0.80 +/- 0.04, free from neutron-nucleus interaction ambiguities in the
continuum. In addition we have detected the contribution of the non-resonant
d-wave capture component in the partial cross sections for transitions leading
to the 1/2- and 3/2- states. While the s-wave capture dominates at En < 100
keV, the d-wave component turns out to be very important at higher energies.
From the present investigation the 12C(n,gamma)13C reaction rate is obtained
for temperatures in the range 10E+7 - 10E+10 K.Comment: Accepted for publication in Phys. Rev. C. - 16 pages + 8 figure
Determination of the electromagnetic character of soft dipole modes solely based on quasicontinuous gamma spectroscopy
We show that the combined analysis of the quasicontinuous gamma spectra from
the (He-3,alpha) and the (n-thermal,2gamma) reactions gives the possibility to
measure the electromagnetic character of soft dipole resonances. Two-step
gamma-cascade spectra have been calculated, using level densities and radiative
strength functions from the (He-3,alpha gamma) reaction. The calculations show
that the intensity of the two-step cascades depends on the electromagnetic
character of the soft dipole resonance under study. The difference reaches
40-100% which can be measured experimentally.Comment: 9 pages including 1 table and 2 figure
Thermal and electromagnetic properties of 166-Er and 167-Er
The primary gamma-ray spectra of 166-Er and 167-Er are deduced from the
(3-He,alpha gamma) and (3-He,3-He' gamma) reaction, respectively, enabling a
simultaneous extraction of the level density and the gamma-ray strength
function. Entropy, temperature and heat capacity are deduced from the level
density within the micro-canonical and the canonical ensemble, displaying
signals of a phase-like transition from the pair-correlated ground state to an
uncorrelated state at Tc=0.5 MeV. The gamma-ray strength function displays a
bump around E-gamma=3 MeV, interpreted as the pygmy resonance.Comment: 21 pages including 2 tables and 11 figure
Evolution of level density step structures from 56,57-Fe to 96,97-Mo
Level densities have been extracted from primary gamma spectra for 56,57-Fe
and 96,97-Mo nuclei using (3-He,alpha gamma) and (3-He,3-He') reactions on
57-Fe and 97-Mo targets. The level density curves reveal step structures above
the pairing gap due to the breaking of nucleon Cooper pairs. The location of
the step structures in energy and their shapes arise from the interplay between
single-particle energies and seniority-conserving and seniority-non-conserving
interactions.Comment: 9 pages, including 5 figure
Level densities and -strength functions in Sm
The level densities and -strength functions of the weakly deformed
Sm and Sm nuclei have been extracted. The temperature versus
excitation energy curve, derived within the framework of the micro canonical
ensemble, shows structures, which we associate with the break up of Cooper
pairs. The nuclear heat capacity is deduced within the framework of both the
micro canonical and the canonical ensemble. We observe negative heat capacity
in the micro canonical ensemble whereas the canonical heat capacity exhibits an
S-shape as function of temperature, both signals of a phase transition. The
structures in the -strength functions are discussed in terms of the
pygmy resonance and the scissors mode built on exited states. The samarium
results are compared with data for the well deformed Dy,
Er and Yb isotopes and with data from
(n,)-experiments and giant dipole resonance studies.Comment: 12 figure
Measurement of the 2H(n,γ)3H reaction cross section between 10 and 550 keV
We have measured for the first time the cross section of the 2H(n,γ)3H reaction at an energy relevant to big-bang nucleosynthesis by employing a prompt discrete -ray detection method. The outgoing photons have been detected by means of anti-Compton NaI(Tl) spectrometers with a large signal-to-noise ratio. The resulting cross sections are 2.23±0.34,1.99±0.25, and 3.76±0.41µb at En=30.5,54.2, and 531 keV, respectively. At En=30.5 keV the cross section differs from the value reported previously by a factor of 2. Based on the present data the reaction rate has been obtained for temperatures in the range 107-1010 K. The astrophysical impact of the present result is discussed. The obtained cross sections are compared with a theoretical calculation based on the Faddeev approach, which includes meson exchange currents as well as a three-nucleon force
Level density and thermal properties in rare earth nuclei
A convergent method to extract the nuclear level density and the gamma-ray
strength function from primary gamma-ray spectra has been established.
Thermodynamical quantities have been obtained within the microcanonical and
canonical ensemble theory. Structures in the caloric curve and in the heat
capacity curve are interpreted as fingerprints of breaking of Cooper pairs and
quenching of pairing correlations. The strength function can be described using
models and common parameterizations for the E1, M1 and pygmy resonance
strength. However, a significant decrease of the pygmy resonance strength at
finite temperatures has been observed.Comment: 15 pages including 8 figures. Proceedings article for the conference
Nuclear Structure and Related Topics, Dubna, Russia, June 6-10, 200
Gamma-ray strength function and pygmy resonance in rare earth nuclei
The gamma-ray strength function for gamma energies in the 1-7 MeV region has
been measured for 161,162-Dy and 171,172-Yb using the (3-He,alpha gamma)
reaction. Various models are tested against the observed gamma-ray strength
functions. The best description is based on the Kadmenskii, Markushev and
Furman E1 model with constant temperature and the Lorentzian M1 model. A
gamma-ray bump observed at E_gamma=3 MeV is interpreted as the so-called pygmy
resonance, which has also been observed previously in (n,gamma) experiments.
The parameters for this resonance have been determined and compared to the
available systematics.Comment: 11 pages, including 4 figures and 2 table
Concentration of electric dipole strength below the neutron separation energy in N = 82 nuclei
The semi-magic nuclei Ba-138, Ce-140, and Sm-144 have been investigated in
photon scattering experiments up to an excitation energy of about 10 MeV. The
distribution of the electric dipole strength shows a resonance like structure
at energies between 5.5 and 8 MeV exhausting up to 1% of the isovector E1
Energy Weighted Sum Rule.Comment: 10 pages, 3 figure
- …