235 research outputs found
Bimeron nanoconfined design
We report on the stabilization of the topological bimeron excitations in
confined geometries. The Monte Carlo simulations for a ferromagnet with a
strong Dzyaloshinskii-Moriya interaction revealed the formation of a mixed
skyrmion-bimeron phase. The vacancy grid created in the spin lattice
drastically changes the picture of the topological excitations and allows one
to choose between the formation of a pure bimeron and skyrmion lattice. We
found that the rhombic plaquette provides a natural environment for
stabilization of the bimeron excitations. Such a rhombic geometry can protect
the topological state even in the absence of the magnetic field.Comment: 5 pages, 7 figure
Profile approach for recognition of three-dimensional magnetic structures
We propose an approach for low-dimensional visualisation and classification
of complex topological magnetic structures formed in magnetic materials. Within
the approach one converts a three-dimensional magnetic configuration to a
vector containing the only components of the spins that are parallel to the z
axis. The next crucial step is to sort the vector elements in ascending or
descending order. Having visualized profiles of the sorted spin vectors one can
distinguish configurations belonging to different phases even with the same
total magnetization. For instance, spin spiral and paramagnetic states with
zero total magnetic moment can be easily identified. Being combined with a
simplest neural network our profile approach provides a very accurate phase
classification for three-dimensional magnets characterized by complex
multispiral states even in the critical areas close to phases transitions. By
the example of the skyrmionic configurations we show that profile approach can
be used to separate the states belonging to the same phase
Study of the resonance α+13C interaction at low energies: Optimization of parameters of the beam shape
About half of all elements heavier than iron are produced in a stellar environment through the s process, which involves a series of subsequent neutron captures and α decays. The reaction 13C(α,n)16O is considered to be the main source of neutrons for the s process at low temperatures in low mass stars in the asymptotic giant branch (AGB). In order to understand better creation of such elements we need to imrove the understanding of creation of such elements, that is to obtain the excitation functions of the 13C (α, α)17O elastic scattering at the initial beam energy 13C from 1.7Mev/A till energies close to zero by using the Thick Target Inverse Kinematics method (TTIK) [1]. The experiment will be conducted in Astana, KZ by using a new heavy ion accelerator DC-60 that provides ion beam with the energy 1.75 MeV/nucleon [1]. To improve the results and reduce errors, the profiling of the beam within the experimental camera is required. In this article, the detailed preparations for this measurement are described
Study of the resonance α+13C interaction at low energies: Optimization of parameters of the beam shape
About half of all elements heavier than iron are produced in a stellar environment through the s process, which involves a series of subsequent neutron captures and α decays. The reaction 13C(α,n)16O is considered to be the main source of neutrons for the s process at low temperatures in low mass stars in the asymptotic giant branch (AGB). In order to understand better creation of such elements we need to imrove the understanding of creation of such elements, that is to obtain the excitation functions of the 13C (α, α)17O elastic scattering at the initial beam energy 13C from 1.7Mev/A till energies close to zero by using the Thick Target Inverse Kinematics method (TTIK) [1]. The experiment will be conducted in Astana, KZ by using a new heavy ion accelerator DC-60 that provides ion beam with the energy 1.75 MeV/nucleon [1]. To improve the results and reduce errors, the profiling of the beam within the experimental camera is required. In this article, the detailed preparations for this measurement are described
Supervised learning magnetic skyrmion phases
We propose and apply simple machine learning approaches for recognition and
classification of complex non-collinear magnetic structures in two-dimensional
materials. The first approach is based on the implementation of the
single-hidden-layer neural network that only relies on the z projections of the
spins. In this setup one needs a limited set of magnetic configurations to
distinguish ferromag- netic, skyrmion and spin spiral phases, as well as their
different combinations in transitional areas of the phase diagram. The network
trained on the configurations for square-lattice Heisenberg model with
Dzyaloshinskii-Moriya interaction can classify the magnetic structures obtained
from Monte Carlo calculations for triangular lattice and vice versa. The second
approach we apply, a minimum distance method performs a fast and cheap
classification in cases when a particular configuration is to be assigned to
only one magnetic phase. The methods we propose are also easy to use for
analysis of the numerous experimental data collected with spin-polarized
scanning tunneling microscopy and Lorentz transmission electron microscopy
experiments.Comment: 9 pages, 14 figures. Accepted for publication in Physical Review
Performance of Water-Based Liquid Scintillator: An Independent Analysis
The water-based liquid scintillator (WbLS) is a new material currently under development. It is based on the idea of dissolving
the organic scintillator in water using special surfactants. This material strives to achieve the novel detection techniques by
combining theCerenkov rings and scintillation light, aswell as the total cost reduction compared to pure liquid scintillator (LS).The
independent light yieldmeasurement analysis for the light yield measurements using three different proton beamenergies (210MeV,
475MeV, and 2000MeV) for water, two different WbLS formulations (0.4% and 0.99%), and pure LS conducted at Brookhaven
National Laboratory, USA, is presented. The results show that a goal of ∼100 optical photons/MeV, indicated by the simulation to
be an optimal light yield for observing both the Cerenkov ring and the scintillation light from the proton decay in a large water
detector, has been achieve
Estimating Patterns of Classical and Quantum Skyrmion States
In this review we discuss the latest results concerning development of the
machine learning algorithms for characterization of the magnetic skyrmions that
are topologically-protected magnetic textures originated from the
Dzyaloshinskii-Moriya interaction that competes Heisenberg isotropic exchange
in ferromagnets. We show that for classical spin systems there is a whole pool
of machine approaches allowing their accurate phase classification and
quantitative description on the basis of few magnetization snapshots. In turn,
investigation of the quantum skyrmions is a less explored issue, since there
are fundamental limitations on the simulation of such wave functions with
classical supercomputers. One needs to find the ways to imitate quantum
skyrmions on near-term quantum computers. In this respect, we discuss
implementation of the method for estimating structural complexity of classical
objects for characterization of the quantum skyrmion state on the basis of
limited number of bitstrings obtained from the projective measurements
Random Number Hardware Generator Using Geiger‐Mode Avalanche Photo Detector
This paper presents the physical concept and test results of sample data of the high-speed
hardware true random number generator design based on typically used for High Energy
Physics hardware. Main features of this concept are the high speed of the true random
numbers generation (tens of Mbt/s), miniature size and estimated lower production cost.
This allows the use of such a device not only in large companies and government offices
but for the end-user data cryptography, in classrooms, in scientific Monte-Carlo
simulations, computer games and any other place where large number of true random
numbers is required. The physics of the operations principle of using a Geiger-mode
avalanche photo detector is discussed and the high quality of the data collected is
demonstrated
- …