309 research outputs found

    Superhyperfine interactions in Ce3+ doped LiYF4 crystal: ENDOR measurements

    Full text link
    The first observation of the resolved Mims electron-nuclear double resonance (ENDOR) spectra from the nearby and remote nuclei of 19F and 7Li nuclei on impurity Ce3+ ions in LiYF4 crystal is reported. It shows that LiYF4:Ce3+ system can be exploited as a convenient matrix for performing spin manipulations and adjusting quantum computation protocols while ENDOR technique could be used for the investigation of electron-nuclear interaction with all the nuclei of the system and exploited for the electron-nuclear spin manipulations.Comment: 4 pages, 2 figures, 1 Table. Reported on Theor-2017 (Kazan, Russia) Conferenc

    On the nonlinear NMR and magnon BEC in antiferromagnetic materials with coupled electron-nuclear spin precession

    Get PDF
    We present a new study of nonlinear NMR and Bose-Einstein Condensation (BEC) of nuclear spin waves in antiferromagnetic MnCO3 with coupled electron and nuclear spins. In particular, we show that the observed behaviour of NMR signals strongly contradicts the conventional description of paramagnetic ensembles of noninteracting spins based on the phenomenological Bloch equations. We present a new theoretical description of the coupled electron-nuclear spin precession, which takes into account an indirect relaxation of nuclear spins via the electron subsystem. We show that the magnitude of the nuclear magnetization is conserved for arbitrary large excitation powers, which is drastically different from the conventional heating scenario derived from the Bloch equations. This provides strong evidence that the coherent precession of macroscopic nuclear magnetization observed experimentally can be identified with BEC of nuclear spin waves with k=0.Comment: 12 pages, 8 figure

    On the "spin-freezing" mechanism in underdoped superconducting cuprates

    Full text link
    The letter deals with the spin-freezing process observed by means of NMR-NQR relaxation or by muon spin rotation in underdoped cuprate superconductors. This phenomenon, sometimes referred as coexistence of antiferromagnetic and superconducting order parameters, is generally thought to result from randomly distributed magnetic moments related to charge inhomogeneities (possibly stripes) which exhibit slowing down of their fluctuations on cooling below Tc_c . Instead, we describe the experimental findings as due to fluctuating, vortex-antivortex, orbital currents state coexisting with d-wave superconducting state. A direct explanation of the experimental results, in underdoped Y1x_{1-x}Cax_xBa2_2Cu3_3O6.1_{6.1} and La2x_{2-x}Sr%_xCuO4_4, is thus given in terms of freezing of orbital current fluctuations

    Inhomogeneity of the intrinsic magnetic field in superconducting YBa 2Cu3OX compounds as revealed by a rare-earth EPR probe

    Get PDF
    X-band electron paramagnetic resonance experiments on doped Er 3+ and Yb3+ ions in YBa2Cu3O X (6<X<7) compounds with different oxygen contents in a wide temperature range (4-120 K) have been performed. In the superconducting species at temperatures significantly below TC, strong dependences of the linewidth and resonance line position on the sweep direction of the applied magnetic field are revealed. The possible origins of the observed hysteresis are analysed. The applicability of the presented EPR approach to extract information about the dynamics of the flux-line lattice and critical state parameters (critical current density, JC, magnetic penetration depth, λ, and characteristic spatial scale of the inhomogeneity) is discussed. © 2005 IOP Publishing Ltd

    Inhomogeneity of the intrinsic magnetic field in superconducting YBa2Cu3OX compounds as revealed by rare-earth EPR-probe

    Full text link
    X-band electron paramagnetic resonance on doped Er3+ and Yb3+ ions in Y0.99(Yb,Er)0.01Ba2Cu3OX compounds with different oxygen contents in the wide temperature range (4-120)K have been made. In the superconducting species, the strong dependencies of the linewidth and resonance line position from the sweep direction of the applied magnetic field are revealed at the temperatures significantly below TC. The possible origins of the observed hysteresis are analyzed. Applicability of the presented EPR approach to extract information about the dynamics of the flux-line lattice and critical state parameters (critical current density, magnetic penetration depth, and characteristic spatial scale of the inhomogeneity) is discussedComment: 17 pages, 5 Figures. Renewed versio

    Probing the Yb3+^{3+} spin relaxation in Y0.98_{0.98}Yb0.02_{0.02}Ba2_{2}Cu3_{3}Ox_{x} by Electron Paramagnetic Resonance

    Full text link
    The relaxation of Yb3+^{3+} in YBa2_{2}Cu3_{3}Ox_{x} (6<x<76<x<7) was studied using Electron Paramagnetic Resonance (EPR). It was found that both electronic and phononic processes contribute to the Yb3+^{3+} relaxation. The phononic part of the relaxation has an exponential temperature dependence, which can be explained by a Raman process via the coupling to high-energy (\sim500 K) optical phonons or an Orbach-like process via the excited vibronic levels of the Cu2+^{2+} ions (localized Slonczewski-modes). In a sample with a maximum oxygen doping xx=6.98, the electronic part of the relaxation follows a Korringa law in the normal state and strongly decreases below TcT_{c}. Comparison of the samples with and without Zn doping proved that the superconducting gap opening is responsible for the sharp decrease of Yb3+^{3+} relaxation in YBa2_{2}Cu3_{3}O6.98_{6.98}. It was shown that the electronic part of the Yb3+^{3+} relaxation in the superconducting state follows the same temperature dependence as 63^{63}Cu and 17^{17}O nuclear relaxations despite the huge difference between the corresponding electronic and nuclear relaxation rates.Comment: 8 pages, 6 figure

    Coherent manipulation of dipolar coupled spins in an anisotropic environment

    Full text link
    We study coherent dynamics in a system of dipolar coupled spin qubits diluted in solid and subjected to a driving microwave field. In the case of rare earth ions, anisotropic crystal background results in anisotropic g tensor and thus modifies the dipolar coupling. We develop a microscopic theory of spin relaxation in transient regime for the frequently encountered case of axially symmetric crystal field. The calculated decoherence rate is nonlinear in Rabi frequency. We show that the direction of static magnetic field that corresponds to the highest spin g-factor is preferable in order to obtain higher number of coherent qubit operations. The results of calculations are in excellent agreement with our experimental data on Rabi oscillations recorded for a series of CaWO4 crystals with different concentrations of Nd3+ ions.Comment: 16 pages, 9 figure

    EPR study of clusters of rare-earth ions in mixed fluoride crystals

    Get PDF
    The EPR spectra of the (BaF2)1 - x (CeF3) x system are studied for the concentrations x = 0, 0.001, 0.002, 0.005, 0.01, and 0.02. The appearance of new tetragonal centers is detected beginning from x = 0.002, the intensity of these centers being maximal at x = 0.01. The (CaF2)1 - x - y (CeF3) x (YF3) y double solutions with x = 0.001 and y from 0 to 0.02 are also studied. In addition to the ordinary tetragonal center, beginning from y = 0.001, a new tetragonal center appears with the same structure as in the previously studied mixed crystals based on BaF2 - namely, the Ce3+-R3+ chain elongated along the fourfold axis substitutes the Ca2+-Ca2+-Ca2+ and Ba 2+-Ba2+-Ba2+ chains in regular CaF2 and BaF2 crystals (is the cation vacancy, and R3+ is the Ce3+, La3+, or Y3+ trivalent ion). © 2014 Pleiades Publishing, Ltd

    Study of the structures of the tetragonal paramagnetic centers in the mixed fluorite crystals with rare-earth ions by EPR

    Get PDF
    © Springer-Verlag Wien 2014. Electron paramagnetic resonance (EPR) of the mixed fluorite crystals with the general formula (MeF2)1-x-y(REF3)x(RF3)y (Me = Ca, Sr, Ba; R = Y, La, Lu; RE—paramagnetic trivalent rare-earth ions) were studied comprehensively by different authors and several structural models of paramagnetic centers were considered. However, a lot of details of EPR spectra still remain unexplained. In this work some modifications of the simplest models are proposed which allow explaining adequately the variety of the tetragonal centers in crystals grown under the different conditions. The calculated from the proposed models components of g-factors for Ce3+, Nd3+, Sm3+, Er3+ ions are in a good agreement with the experimental values
    corecore