4,119 research outputs found

    A hierarchical research by large-scale and ab initio electronic structure theories -- Si and Ge cleavage and stepped (111)-2x1 surfaces --

    Full text link
    The ab initio calculation with the density functional theory and plane-wave bases is carried out for stepped Si(111)-2x1 surfaces that were predicted in a cleavage simulation by the large-scale (order-N) electronic structure theory (T. Hoshi, Y. Iguchi and T. Fujiwara, Phys. Rev. B72 (2005) 075323). The present ab initio calculation confirms the predicted stepped structure and its bias-dependent STM image. Moreover, two (meta)stable step-edge structures are found and compared. The investigation is carried out also for Ge(111)-2x1 surfaces, so as to construct a common understanding among elements. The present study demonstrates the general importance of the hierarchical research between large-scale and ab initio electronic structure theories.Comment: 5 pages, 4 figures, to appear in Physica

    Accuracy control in ultra-large-scale electronic structure calculation

    Full text link
    Numerical aspects are investigated in ultra-large-scale electronic structure calculation. Accuracy control methods in process (molecular-dynamics) calculation are focused. Flexible control methods are proposed so as to control variational freedoms, automatically at each time step, within the framework of generalized Wannier state theory. The method is demonstrated in silicon cleavage simulation with 10^2-10^5 atoms. The idea is of general importance among process calculations and is also used in Krylov subspace theory, another large-scale-calculation theory.Comment: 8 pages, 3 figures. To appear in J.Phys. Condens. Matter. A preprint PDF file in better graphics is available at http://fujimac.t.u-tokyo.ac.jp/lses/index_e.htm

    Magnetization of a half-quantum vortex in a spinor Bose-Einstein condensate

    Full text link
    Magnetization dynamics of a half-quantum vortex in a spin-1 Bose-Einstein condensate with a ferromagnetic interaction are investigated by mean-field and Bogoliubov analyses. The transverse magnetization is shown to break the axisymmetry and form threefold domains. This phenomenon originates from the topological structure of the half-quantum vortex and spin conservation.Comment: 6 pages, 3 figure

    Million-atom molecular dynamics simulation by order-N electronic structure theory and parallel computation

    Full text link
    Parallelism of tight-binding molecular dynamics simulations is presented by means of the order-N electronic structure theory with the Wannier states, recently developed (J. Phys. Soc. Jpn. 69,3773 (2000)). An application is tested for silicon nanocrystals of more than millions atoms with the transferable tight-binding Hamiltonian. The efficiency of parallelism is perfect, 98.8 %, and the method is the most suitable to parallel computation. The elapse time for a system of 2×1062\times 10^6 atoms is 3.0 minutes by a computer system of 64 processors of SGI Origin 3800. The calculated results are in good agreement with the results of the exact diagonalization, with an error of 2 % for the lattice constant and errors less than 10 % for elastic constants.Comment: 5 pages, 3 figure

    Large-scale electronic structure theory for simulating nanostructure process

    Full text link
    Fundamental theories and practical methods for large-scale electronic structure calculations are given, in which the computational cost is proportional to the system size. Accuracy controlling methods for microscopic freedoms are focused on two practical solver methods, Krylov-subspace method and generalized-Wannier-state method. A general theory called the 'multi-solver' scheme is also formulated, as a hybrid between different solver methods. Practical examples are carried out in several insulating and metallic systems with 10^3-10^5 atoms. All the theories provide general guiding principles of constructing an optimal calculation for simulating nanostructure processes, since a nanostructured system consists of several competitive regions, such as bulk and surface regions, and the simulation is designed to reproduce the competition with an optimal computational cost.Comment: 19 pages, 6 figures. To appear in J. Phys. Cond. Matt. A preprint PDF file in better graphics is available at http://fujimac.t.u-tokyo.ac.jp/lses/index_e.htm

    Initial Opening Steps of K+ Channels Probed by Extracellular Multivalent Cations

    Get PDF

    Krylov Subspace Method for Molecular Dynamics Simulation based on Large-Scale Electronic Structure Theory

    Full text link
    For large scale electronic structure calculation, the Krylov subspace method is introduced to calculate the one-body density matrix instead of the eigenstates of given Hamiltonian. This method provides an efficient way to extract the essential character of the Hamiltonian within a limited number of basis set. Its validation is confirmed by the convergence property of the density matrix within the subspace. The following quantities are calculated; energy, force, density of states, and energy spectrum. Molecular dynamics simulation of Si(001) surface reconstruction is examined as an example, and the results reproduce the mechanism of asymmetric surface dimer.Comment: 7 pages, 3 figures; corrected typos; to be published in Journal of the Phys. Soc. of Japa

    Spin accumulation created electrically in an n-type germanium channel using Schottky tunnel contacts

    Full text link
    Using high-quality Fe3_{3}Si/n+n^{+}-Ge Schottky-tunnel-barrier contacts, we study spin accumulation in an nn-type germanium (nn-Ge) channel. In the three- or two-terminal voltage measurements with low bias current conditions at 50 K, Hanle-effect signals are clearly detected only at a forward-biased contact. These are reliable evidence for electrical detection of the spin accumulation created in the nn-Ge channel. The estimated spin lifetime in nn-Ge at 50 K is one order of magnitude shorter than those in nn-Si reported recently. The magnitude of the spin signals cannot be explained by the commonly used spin diffusion model. We discuss a possible origin of the difference between experimental data and theoretical values.Comment: 4 pages, 3 figures, To appear in J. Appl. Phy
    corecore