9,273 research outputs found
Restoration of isotropy on fractals
We report a new type of restoration of macroscopic isotropy (homogenization)
in fractals with microscopic anisotropy. The phenomenon is observed in various
physical setups, including diffusions, random walks, resistor networks, and
Gaussian field theories. The mechanism is unique in that it is absent in spaces
with translational invariance, while universal in that it is observed in a wide
class of fractals.Comment: 11 pages, REVTEX, 3 postscript figures. (Compressed and encoded
figures archived by "figure" command). To appear in Physical Review Letter
A possible route to spontaneous reduction of the heat conductivity by a temperature gradient driven instability in electron-ion plasmas
We have shown that there exists low-frequency growing modes driven by a
global temperature gradient in electron and ion plasmas, by linear perturbation
analysis within the frame work of plasma Kinetic theory. The driving force of
the instability is the local deviation of the distribution function from the
Maxwell-Boltzmann due to global temperature gradient. Application to the
intracluster medium shows that scattering of the particles due to waves excited
by the instability is possible to reduce mean free paths of electron and ion
down to five to seven order of magnitude than the mean free paths due to
Coulomb collisions. This may provide a hint to explain why hot and cool gas can
co-exist in the intracluster medium in spite of the very short evaporation time
scale due to thermal conduction if the conductivity is the classical Spitzer
value. Our results suggest that the realization of the global thermal
equilibrium is postponed by the local instability which is induced for quicker
realization of local thermal equilibrium state in plasmas. The instability
provides a new possibility to create and grow cosmic magnetic fields without
any seed magnetic field.Comment: Accepted for publication in ApJ: 16 pages, 1figur
Gravitational Lensing in Clusters of Galaxies
Gravitational lensing in clusters of galaxies is an efficient tool to probe
the mass distribution of galaxies and clusters, high redshift objects thanks to
the gravitational amplification, and the geometry of the universe. We review
some important aspects of cluster lensing and related issues in observational
cosmology.Comment: invited review of the journal: Progress of Theoretical Physics (in
press) 51 pages - 33 figure
Diversity and altitudinal niche width characteristics for 35 taxa of the Papua New Guinea Frullania flora with consideration of sibling pairs
The Frullania taxa on Mount Albert Edward, Papua New Guinea, form many associations that suggest a high degree of niche similarity, but at different altitudes, different associations form. The species diversity of the genus is greatest at the middle altitudes and least in the dry lowlands. This altitudinal separation is apparent in the niche widths of the taxa. The members of the four sibling taxa pairs examined exhibit distinct altitudinal niches, suggesting that the sibling taxa are distinct, with different niche optima
Fermion Masses and Mixings in a String Inspired Model
In the context of Calabi-Yau string models we explore the origin of
characteristic pattern of quark-lepton masses and the CKM matrix. The discrete
-symmetry is introduced and the is assigned to the
-parity. The gauge symmetry at the string scale, , is
broken into the standard model gauge group at a very large intermediate energy
scale. At energies below the intermediate scale down-type quarks and also
leptons are mixed with unobserved heavy states, respectively. On the other
hand, there are no such mixings for up-type quarks. Due to the large mixings
between light states and heavy ones we can derive phenomenologically viable
fermion mass hierarchies and the CKM matrix. Mass spectra for
intermediate-scale matter beyond the MSSM are also determined. Within this
framework proton lifetime is long enough to be consistent with experimental
data. As for the string scale unification of gauge couplings, however,
consistent solutions are not yet found.Comment: 49 pages, 1 figure, Latex Revised version includes discussion on FCNC
problems. Final version to appear in Prog. Theor. Phys. Vol.96 No.
Titanium and water-rich metamorphic olivine in high-pressure serpentinites from the Voltri Massif (Ligurian Alps, Italy): evidence for deep subduction of high-field strength and fluid-mobile elements
Titanium- and water-rich metamorphic olivine (Fo 86-88) is reported from partially dehydrated serpentinites from the Voltri complex, Ligurian Alps. The rocks are composed of mostly antigorite and olivine in addition to magnetite, chlorite, clinopyroxene and Ti-clinohumite. In situ secondary ion mass spectrometry (SIMS) data show that metamorphic olivine has very high and strongly correlated H2O (up to 0.7 wt%) and TiO2 contents (up to 0.85 wt%). Ti-rich olivine shows colourless to yellow pleochroism. Olivine associated with Ti-clinohumite contains low Ti, suggesting that Ti-rich olivine is not the breakdown product of Ti-clinohumite. Fourier transform infrared spectroscopy (FTIR) absorption spectra show peaks of serpentine, Ti-clinohumite and OH-related Si vacancies. Combining FTIR and SIMS data, we suggest the presence of clustered planar defects or nanoscale exsolutions of Ti-clinohumite in olivine. These defects or exsolutions contain more H2O (x similar to 0.1 in the formula 4Mg(2)SiO(4)center dot(1-x)Mg(OH, F)(2)center dot xTiO(2)) than Ti-clinohumite in the sample matrix (x = 0.34-0.46). In addition to TiO2 and H2O, secondary olivine contains significant Li (2-60 ppm), B (10-20 ppm), F (10-130 ppm) and Zr (0.9-2.1 ppm). It is enriched in B-11 (delta B-11 = +17 to +23 parts per thousand). Our data indicate that secondary olivine may play a significant role in transporting water, high-field strength and fluid-mobile elements into the deeper mantle as well as introduce significant B isotope anomalies. Release of hydrogen from H2O-rich olivine subducted into the deep mantle may result in strongly reduced mantle domains.OAIID:oai:osos.snu.ac.kr:snu2014-01/102/0000043439/1SEQ:1PERF_CD:SNU2014-01EVAL_ITEM_CD:102USER_ID:0000043439ADJUST_YN:YEMP_ID:A076886DEPT_CD:3345CITE_RATE:3.476FILENAME:de hoog et al-14-cmp-titanium- and water-ric.pdfDEPT_NM:지구환경과학부SCOPUS_YN:NCONFIRM:
Transition density of diffusion on Sierpinski gasket and extension of Flory's formula
Some problems related to the transition density u(t,x) of the diffusion on
the Sierpinski gasket are considerd, based on recent rigorous results and
detailed numerical calculations. The main contents are an extension of Flory's
formula for the end-to-end distance exponent of self-avoiding walks on the
fractal spaces, and an evidence of the oscillatory behavior of u(t,x) on the
Sierpinski gasket.Comment: 11 pages, REVTEX, 2 postscript figure
How Can We Obtain a Large Majorana-Mass in Calabi-Yau Models ?
In a certain type of Calabi-Yau superstring models it is clarified that the
symmetry breaking occurs by stages at two large intermediate energy scales and
that two large intermediate scales induce large Majorana-masses of right-handed
neutrinos. Peculiar structure of the effective nonrenormalizable interactions
is crucial in the models. In this scheme Majorana-masses possibly amount to
O(10^{9 \sim 10}\gev) and see-saw mechanism is at work for neutrinos. Based
on this scheme we propose a viable model which explains the smallness of masses
for three kind of neutrinos .
Special forms of the nonrenormalizable interactions can be understood as a
consequence of an appropriate discrete symmetry of the compactified manifold.Comment: 30-pages + 6-figures, LaTeX, Preprint DPNU-94-02, AUE-01-9
- …