8 research outputs found
Numerical simulation of residual behavior of steel concrete interface after high temperature exposure
International audienceBehaviour of reinforced concrete and prestressed concrete structures subjected to fire is an important research theme in civil engineering. In addition, experiment investigations show that the concrete behavior is strongly affected by temperature. The aim of this work is to study numerically the residual behavior of steel-concrete bond after high temperature exposure. To do a numerical study, bond stress at the steel-concrete interface were developed using a concrete damage plasticity model (CDP model) implemented in the nonlinear finite element software «ABAQUS». The physical, mechanical and damage plasticity parameters (compressive damage and tensile damage) required for the model were drawn from previous literature works and the model was validated by simulating the uniaxial compression strength test under different temperatures using Abaqus code. The model was finally applied to simulate a pull-out test made on a reinforced concrete specimen heated at various temperature (105°C, 150°C, 200°C, 300°C, 400°C and 500°C.) and then cooled at room temperature. The numerical results show a good correlation with the experimental results and clearly indicate a deterioration of bond performance when temperature increased, particularly the bond stress, bond stiffness and pull-out force. The model was also used to validate the results of initiation and propagation of cracks. © 2021 by authors, all rights reserved
Numerical study of the effect of concrete cover and the friction of steel concrete interface
The work presented in this paper resume a numerical analysis of the concrete cover effect, on the resistance of the steel-concrete interface. The effect of friction on the interface behavior is also included. For this, a brief description of the experimental steps generally used for the characterization of the steel-concrete interface is presented. Also, the CDP model, Concrete Damage Plasticity, is illustrated. The results of the numerical simulation using the Abaqus code are presented with different diameters of coatings with and without friction
Étude numérique de l’effet de l’enrobage et du frottement sur l’interface acier béton
International audienc