888 research outputs found

    Surface Acoustic Wave induced Transport in a Double Quantum Dot

    Get PDF
    We report on non-adiabatic transport through a double quantum dot under irradiation of surface acoustic waves generated on-chip. At low excitation powers, absorption and emission of single and multiple phonons is observed. At higher power, sequential phonon assisted tunneling processes excite the double dot in a highly non-equilibrium state. The present system is attractive for studying electron-phonon interaction with piezoelectric coupling.Comment: 4 pages, 3 figure

    Non-Markovian dynamics of double quantum dot charge qubits due to acoustic phonons

    Full text link
    We investigate the dynamics of a double quantum dot charge qubit which is coupled to piezoelectric acoustic phonons, appropriate for GaAs heterostructures. At low temperatures, the phonon bath induces a non-Markovian dynamical behavior of the oscillations between the two charge states of the double quantum dot. Upon applying the numerically exact quasiadiabatic propagator path-integral scheme, the reduced density matrix of the charge qubit is calculated, thereby avoiding the Born-Markov approximation. This allows a systematic study of the dependence of the Q-factor on the lattice temperature, on the size of the quantum dots, as well as on the interdot coupling. We calculate the Q-factor for a recently realized experimental setup and find that it is two orders of magnitudes larger than the measured value, indicating that the decoherence due to phonons is a subordinate mechanism.Comment: 5 pages, 7 figures, replaced with the version to appear in Phys. Rev.

    Gate-tunable band structure of the LaAlO3_3-SrTiO3_3 interface

    Get PDF
    The 2-dimensional electron system at the interface between LaAlO3_{3} and SrTiO3_{3} has several unique properties that can be tuned by an externally applied gate voltage. In this work, we show that this gate-tunability extends to the effective band structure of the system. We combine a magnetotransport study on top-gated Hall bars with self-consistent Schr\"odinger-Poisson calculations and observe a Lifshitz transition at a density of 2.9×10132.9\times10^{13} cm2^{-2}. Above the transition, the carrier density of one of the conducting bands decreases with increasing gate voltage. This surprising decrease is accurately reproduced in the calculations if electronic correlations are included. These results provide a clear, intuitive picture of the physics governing the electronic structure at complex oxide interfaces.Comment: 14 pages, 4 figure

    Entanglement between charge qubits induced by a common dissipative environment

    Full text link
    We study entanglement generation between two charge qubits due to the strong coupling with a common bosonic environment (Ohmic bath). The coupling to the boson bath is a source of both quantum noise (leading to decoherence) and an indirect interaction between qubits. As a result, two effects compete as a function of the coupling strength with the bath: entanglement generation and charge localization induced by the bath. These two competing effects lead to a non-monotonic behavior of the concurrence as a function of the coupling strength with the bath. As an application, we present results for charge qubits based on double quantum dots.Comment: 9 pages, 7 figure

    Direct control of the tunnel splitting in a one-electron double quantum dot

    Full text link
    Quasi-static transport measurements are employed on a laterally defined tunnel-coupled double quantum dot. A nearby quantum point contact allows us to track the charge as added to the device. If charged with only up to one electron, the low-energy spectrum of the double quantum dot is characterized by its quantum mechanical interdot tunnel splitting. We directly measure its magnitude by utilizing particular anticrossing features in the stability diagram at finite source-drain bias. By modification of gate voltages defining the confinement potential as well as by variation of a perpendicular magnetic field we demonstrate the tunability of the coherent tunnel coupling.Comment: High resolution pdf file available at http://www2.nano.physik.uni-muenchen.de/~huettel/research/anticrossing.pd

    Coherent electronic transfer in quantum dot systems using adiabatic passage

    Full text link
    We describe a scheme for using an all-electrical, rapid, adiabatic population transfer between two spatially separated dots in a triple-quantum dot system. The electron spends no time in the middle dot and does not change its energy during the transfer process. Although a coherent population transfer method, this scheme may well prove useful in incoherent electronic computation (for example quantum-dot cellular automata) where it may provide a coherent advantage to an otherwise incoherent device. It can also be thought of as a limiting case of type II quantum computing, where sufficient coherence exists for a single gate operation, but not for the preservation of superpositions after the operation. We extend our analysis to the case of many intervening dots and address the issue of transporting quantum information through a multi-dot system.Comment: Replaced with (approximately) the published versio

    Two electrons in a strongly coupled double quantum dot: from an artificial helium atom to a hydrogen molecule

    Full text link
    We study the formation of molecular states in a two-electron quantum dot as a function of the barrier potential dividing the dot. The increasing barrier potential drives the two electron system from an artificial helium atom to an artificial hydrogen molecule. To study this strongly coupled regime, we introduce variational wavefunctions which describe accurately two electrons in a single dot, and then study their mixing induced by the barrier. The evolution of the singlet-triplet gap with the barrier potential and with an external magnetic field is analyzed.Comment: 10 pages, 11 figures, added references, extended discussio

    Molecular states in carbon nanotube double quantum dots

    Full text link
    We report electrical transport measurements through a semiconducting single-walled carbon nanotube (SWNT) with three additional top-gates. At low temperatures the system acts as a double quantum dot with large inter-dot tunnel coupling allowing for the observation of tunnel-coupled molecular states extending over the whole double-dot system. We precisely extract the tunnel coupling and identify the molecular states by the sequential-tunneling line shape of the resonances in differential conductance.Comment: 5 pages, 4 figure

    Quantum Non-Demolition Bell State Measurement and N-party GHZ State Preparation in Quantum Dot

    Full text link
    By exploiting the fermionic qubit parity measurement, we present a scheme to realize quantum non-demolition (QND) measurement of Bell-states and generate n-party GHZ state in quantum dot. Compared with the original protocol, the required electron transfer before and after parity measurement can be nonadiabatic, which may speed up the operation speed and make the omitting of spin-orbit interaction more reasonable. This may help us to construct CNOT gate without highly precise control of coupling as the way of D. Gottesman and I. L. Chuang.Comment: some modification to introduction and some details are adde
    corecore