1,791 research outputs found

    Spin and a Running Radius in RS1

    Full text link
    We develop a renormalization group formalism for the compactified Randall-Sundrum scenario wherein the extra-dimensional radius serves as the scaling parameter. Couplings on the hidden brane scale as we move within local effective field theories with varying size of the warped extra dimension. We consider this RG approach applied to U(1) gauge theories and gravity. We use this method to derive a low energy effective theory.Comment: 18 pages, minor changes, references adde

    Axion-Higgs Unification

    Get PDF
    In theories with no fundamental scalars, one gauge group can become strong at a large scale Lambda and spontaneously break a global symmetry, producing the Higgs and the axion as composite pseudo-Nambu-Goldstone bosons. We show how KSVZ and DFSZ axion models can be naturally realised. The assumption Lambda around 10^{11} GeV is phenomenologically favoured because: a) The axion solves the QCD theta problem and provides the observed DM abundance; b) The observed Higgs mass is generated via RGE effects from a small Higgs quartic coupling at the compositeness scale, provided that the Higgs mass term is fine-tuned to be of electroweak size; c) Lepton, quark as well as neutrino masses can be obtained from four-fermion operators at the compositeness scale. d) The extra fermions can unify the gauge couplings.Comment: 19 pages. Refs. added and eq. 3.6 fixe

    AdS/QCD: The Relevance of the Geometry

    Get PDF
    We investigate the relevance of the metric and of the geometry in five-dimensional models of hadrons. Generically, the metric does not affect strongly the results and even flat space agrees reasonably well with the data. Nevertheless, we observe a preference for a decreasing warp factor, for example AdS space. The Sakai-Sugimoto model reduces to one of these models and the level of agreement is similar to the one of flat space. We also consider the discrete version of the five-dimensional models, obtained by dimensional deconstruction. We find that essentially all the relevant features of "holographic" models of QCD can be reproduced with a simple 3-site model describing only the states below the cut-off of the theory.Comment: 25 pages + appendix. v2 minor changes and Refs. adde

    Natural Supersymmetry at the LHC

    Full text link
    If the minimal supersymmetric standard model is the solution to the hierarchy problem, the scalar top quark (stop) and the Higgsino should weigh around the electroweak scale such as 200 GeV. A low messenger scale, which results in a light gravitino, is also suggested to suppress the quantum corrections to the Higgs mass parameters. Therefore the minimal model for natural supersymmetry is a system with stop/Higgsino/gravitino whereas other superparticles are heavy. We study the LHC signatures of the minimal system and discuss the discovery potential and methods for the mass measurements.Comment: 19 pages, 6 figures, 1 tabl

    Implications of a Light Higgs in Composite Models

    Get PDF
    We study the Higgs mass in composite Higgs models with partial compositeness, extending the results of Ref. [1] to different representations of the composite sector for SO(5)/SO(4) and to the coset SO(6)/SO(5). For a given tuning we find in general a strong correlation between the mass of the top partners and the Higgs mass, akin to the one in supersymmetry. If the theory is natural a Higgs mass of 125 GeV typically requires fermionic partners below TeV which might be within the reach of the present run of LHC. A discussion of CP properties of both cosets is also presented.Comment: 19 pages, 11 figures. v2) Minor changes, references adde
    • 

    corecore