5,235 research outputs found

    Early Thermal Evolution of Planetesimals and its Impact on Processing and Dating of Meteoritic Material

    Full text link
    Radioisotopic ages for meteorites and their components provide constraints on the evolution of small bodies: timescales of accretion, thermal and aqueous metamorphism, differentiation, cooling and impact metamorphism. Realising that the decay heat of short-lived nuclides (e.g. 26Al, 60Fe), was the main heat source driving differentiation and metamorphism, thermal modeling of small bodies is of utmost importance to set individual meteorite age data into the general context of the thermal evolution of their parent bodies, and to derive general conclusions about the nature of planetary building blocks in the early solar system. As a general result, modelling easily explains that iron meteorites are older than chondrites, as early formed planetesimals experienced a higher concentration of short-lived nuclides and more severe heating. However, core formation processes may also extend to 10 Ma after formation of Calcium-Aluminum-rich inclusions (CAIs). A general effect of the porous nature of the starting material is that relatively small bodies (< few km) will also differentiate if they form within 2 Ma after CAIs. A particular interesting feature to be explored is the possibility that some chondrites may derive from the outer undifferentiated layers of asteroids that are differentiated in their interiors. This could explain the presence of remnant magnetization in some chondrites due to a planetary magnetic field.Comment: 24 pages, 9 figures, Accepted for publication as a chapter in Protostars and Planets VI, University of Arizona Press (2014), eds. H. Beuther, R. Klessen, C. Dullemond, Th. Hennin

    Topologically Protected Zero Modes in Twisted Bilayer Graphene

    Full text link
    We show that the twisted graphene bilayer can reveal unusual topological properties at low energies, as a consequence of a Dirac-point splitting. These features rely on a symmetry analysis of the electron hopping between the two layers of graphene and we derive a simplified effective low-energy Hamiltonian which captures the essential topological properties of twisted bilayer graphene. The corresponding Landau levels peculiarly reveal a degenerate zero-energy mode which cannot be lifted by strong magnetic fields.Comment: 5 pages, 3 figures; published versio

    Temperature enhanced effects of ozone on cardiovascular mortality in 95 large US communities, 1987-2000 - assessment using the NMMAPS data

    Get PDF
    A few studies examined interactive effects between air pollution and temperature on health outcomes. This study is to examine if temperature modified effects of ozone and cardiovascular mortality in 95 large US cities. A nonparametric and a parametric regression models were separately used to explore interactive effects of temperature and ozone on cardiovascular mortality during May and October, 1987-2000. A Bayesian meta-analysis was used to pool estimates. Both models illustrate that temperature enhanced the ozone effects on mortality in the northern region, but obviously in the southern region. A 10-ppb increment in ozone was associated with 0.41 % (95% posterior interval (PI): -0.19 %, 0.93 %), 0.27 % (95% PI: -0.44 %, 0.87 %) and 1.68 % (95% PI: 0.07 %, 3.26 %) increases in daily cardiovascular mortality corresponding to low, moderate and high levels of temperature, respectively. We concluded that temperature modified effects of ozone, particularly in the northern region

    Weak Charge-Changing Flow in Expanding r-Process Environments

    Get PDF
    We assess the prospects for attaining steady nuclear flow equilibrium in expanding r-process environments where beta decay and/or neutrino capture determine the nuclear charge-changing rates. For very rapid expansions, we find that weak steady flow equilibrium normally cannot be attained. However, even when neutron capture processes freeze out in such nonequilibrium conditions, abundance ratios of nuclear species in the r-process peaks might still mimic those attained in weak steady flow. This result suggests that the r-process yield in a regime of rapid expansion can be calculated reliably only when all neutron capture, photodisintegration, and weak interaction processes are fully coupled in a dynamical calculation. We discuss the implications of these results for models of the r-process sited in rapidly expanding neutrino-heated ejecta.Comment: 21 pages, AAS LaTex, 2 postscript figure

    Effects of correlated turbulent velocity fields on the formation of maser lines

    Full text link
    The microturbulent approximation of turbulent motions is widely used in radiative transfer calculations. Mainly motivated by its simple computational application it is probably in many cases an oversimplified treatment of the dynamical processes involved. This aspect is in particular important in the analysis of maser lines, since the strong amplification of radiation leads to a sensitive dependence of the radiation field on the overall velocity structure. To demonstrate the influence of large scale motions on the formation of maser lines we present a simple stochastic model which takes velocity correlations into account. For a quantitative analysis of correlation effects, we generate in a Monte Carlo simulation individual realizations of a turbulent velocity field along a line of sight. Depending on the size of the velocity correlation length we find huge deviations between the resulting random profiles in respect of line shape, intensity and position of single spectral components. Finally, we simulate the emission of extended maser sources. A qualitative comparison with observed masers associated with star forming regions shows that our model can reproduce the observed general spectral characteristics. We also investigate shortly, how the spectra are effected when a systematic velocity field (simulating expansion) is superposed on the fluctuations. Our results convincingly demonstrate that hydrodynamical motions are of great importance for the understanding of cosmic masers.Comment: Accepted for publication in A&A. 8 pages, 8 figure

    Dust in the wind: Crystalline silicates, corundum and periclase in PG 2112+059

    Full text link
    We have determined the mineralogical composition of dust in the Broad Absorption Line (BAL) quasar PG 2112+059 using mid-infrared spectroscopy obtained with the Spitzer Space Telescope. From spectral fitting of the solid state features, we find evidence for Mg-rich amorphous silicates with olivine stoichiometry, as well as the first detection of corundum (Al_2O_3) and periclase (MgO) in quasars. This mixed composition provides the first direct evidence for a clumpy density structure of the grain forming region. The silicates in total encompass 56.5% of the identified dust mass, while corundum takes up 38 wt.%. Depending on the choice of continuum, a range of mass fractions is observed for periclase ranging from 2.7% in the most conservative case to 9% in a less constrained continuum. In addition, we identify a feature at 11.2 micron as the crystalline silicate forsterite, with only a minor contribution from polycyclic aromatic hydrocarbons. The 5% crystalline silicate fraction requires high temperatures such as those found in the immediate quasar environment in order to counteract rapid destruction from cosmic rays.Comment: 2 figure

    Evaluating Home Health Care Nursing Outcomes With OASIS and NOC

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73163/1/j.1547-5069.2007.00209.x.pd

    Non-LTE dust nucleation in sub-saturated vapors

    Full text link
    We use the kinetic theory of nucleation to explore the properties of dust nucleation in sub-saturated vapors. Due to radiation losses, the sub-critical clusters have a smaller temperature compared to their vapor. This alters the dynamical balance between attachment and detachment of monomers, allowing for stable nucleation of grains in vapors that are sub-saturated for their temperature. We find this effect particularly important at low densities and in the absence of a strong background radiation field. We find new conditions for stable nucleation in the n-T phase diagram. The nucleation in the non-LTE regions is likely to be at much slower rate than in the super-saturated vapors. We evaluate the nucleation rate, warning the reader that it does depend on poorly substantiated properties of the macro-molecules assumed in the computation. On the other hand, the conditions for nucleation depend only on the properties of the large stable grains and are more robust. We finally point out that this mechanism may be relevant in the early universe as an initial dust pollution mechanism, since once the interstellar medium is polluted with dust, mantle growth is likely to be dominant over non-LTE nucleation in the diffuse medium.Comment: 8 pages, 8 figures, accepted for publication in MNRA
    corecore