29,106 research outputs found
New Algorithms for Computing a Single Component of the Discrete Fourier Transform
This paper introduces the theory and hardware implementation of two new
algorithms for computing a single component of the discrete Fourier transform.
In terms of multiplicative complexity, both algorithms are more efficient, in
general, than the well known Goertzel Algorithm.Comment: 4 pages, 3 figures, 1 table. In: 10th International Symposium on
Communication Theory and Applications, Ambleside, U
Experimental investigation of linear-optics-based quantum target detection
The development of new techniques to improve measurements is crucial for all
sciences. By employing quantum systems as sensors to probe some physical
property of interest allows the application of quantum resources, such as
coherent superpositions and quantum correlations, to increase measurement
precision. Here we experimentally investigate a scheme for quantum target
detection based on linear optical measurment devices, when the object is
immersed in unpolarized background light. By comparing the quantum
(polarization-entangled photon pairs) and the classical (separable polarization
states), we found that the quantum strategy provides us an improvement over the
classical one in our experiment when the signal to noise ratio is greater than
1/40, or about 16dB of noise. This is in constrast to quantum target detection
considering non-linear optical detection schemes, which have shown resilience
to extreme amounts of noise. A theoretical model is developed which shows that,
in this linear-optics context, the quantum strategy suffers from the
contribution of multiple background photons. This effect does not appear in our
classical scheme. By improving the two-photon detection electronics, it should
be possible to achieve a polarization-based quantum advantage for a signal to
noise ratio that is close to 1/400 for current technology.Comment: comments are welcome, submitted to PR
Mesoscopic Kondo effect of a quantum dot embedded in an Aharonov-Bohm ring with intradot spin-flip scattering
We study the Kondo effect in a quantum dot embedded in a mesoscopic ring
taking into account intradot spin-flip scattering . Based on the finite-
slave-boson mean-field approach, we find that the Kondo peak in the density of
states is split into two peaks by this coherent spin-flip transition, which is
responsible for some interesting features of the Kondo-assisted persistent
current circulating the ring: (1) strong suppression and crossover to a sine
function form with increasing ; (2) appearance of a "hump" in the
-dependent behavior for odd parity. -induced reverse of the persistent
current direction is also observed for odd parity.Comment: 7 pages,6 figures, to be published by Europhys. Let
Spin-polarized current and shot noise in the presence of spin flip in a quantum dot via nonequilibrium Green's functions
Using non-equilibrium Green functions we calculate the spin-polarized current
and shot noise in a ferromagnet--quantum-dot--ferromagnet (FM-QD-FM) system.
Both parallel (P) and antiparallel (AP) magnetic configurations are considered.
Coulomb interaction and coherent spin-flip (similar to a transverse magnetic
field) are taken into account within the dot. We find that the interplay
between Coulomb interaction and spin accumulation in the dot can result in a
bias-dependent current polarization . In particular, can be
suppressed in the P alignment and enhanced in the AP case depending on the bias
voltage. The coherent spin-flip can also result in a switch of the current
polarization from the emitter to the collector lead. Interestingly, for a
particular set of parameters it is possible to have a polarized current in the
collector and an unpolarized current in the emitter lead. We also found a
suppression of the Fano factor to values well below 0.5.Comment: Published version. 13 pages, 7 figure
Research in Geant4 electromagnetic physics design, and its effects on computational performance and quality assurance
The Geant4 toolkit offers a rich variety of electromagnetic physics models;
so far the evaluation of this Geant4 domain has been mostly focused on its
physics functionality, while the features of its design and their impact on
simulation accuracy, computational performance and facilities for verification
and validation have not been the object of comparable attention yet, despite
the critical role they play in many experimental applications. A new project is
in progress to study the application of new design concepts and software
techniques in Geant4 electromagnetic physics, and to evaluate how they can
improve on the current simulation capabilities. The application of a
policy-based class design is investigated as a means to achieve the objective
of granular decomposition of processes; this design technique offers various
advantages in terms of flexibility of configuration and computational
performance. The current Geant4 physics models have been re-implemented
according to the new design as a pilot project. The main features of the new
design and first results of performance improvement and testing simplification
are presented; they are relevant to many Geant4 applications, where
computational speed and the containment of resources invested in simulation
production and quality assurance play a critical role.Comment: 4 pages, 4 figures and images, to appear in proceedings of the
Nuclear Science Symposium and Medical Imaging Conference 2009, Orland
- …